• 제목/요약/키워드: internal tin process

검색결과 17건 처리시간 0.023초

내부 확산법에 의한 Nb$_3Sn$ 초전도 선재에서 부분 가열이 초전도 특성에 미치는 영향 (The effect of local heating on superconductivities in internal tin processed Nb$_3Sn$ wires)

  • 하동우;오상수;하홍수;이남진;권영길;류강식
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제2권2호
    • /
    • pp.1-5
    • /
    • 2000
  • There is the possibility that internal tin processed Nb$_3Sn$ wires are locally heated during the drawing process and the jacketing process. It is important to know the variations in J$_c$ of internal tin processed Nb$_3Sn$ wires caused by local heating. Internal tin processed Nb$_3Sn$ rods were cold worked to 2.28 mm, using the appropriate reduction ratio, and then cut into several pieces. At this stage, wires were locally 50 mm heat zone heated up to 360$^{\circ}C$. The locally heated Nb$_3Sn$ wires were drawn to a final diameter size of 0.81 mm. Others were cold worked successively to 0.81 mm and locally heated with the same conditions. 2 types of locally heat treated wires were wound on Ti-6Al-4V barrels and heat treated for the Nb$_3Sn$ reaction. Local heating of internal tin processed Nb$_3Sn$ wires after the J$_c$ of these wires. However, local heating at an intermediate stage of the drawing process caused a decrease in J$_c$. When the local heating temperatures were higher than melting point of Sn, non-Cu J$_c$'s decreased significantly. A Sn-Cu alloyed boundary appeared after local heating over the melting point of Sn, and caused work hardening and a decrease in the workability.

  • PDF

내부 확산법에 의한 $Nb_3$Sn초전도선에 Ge 첨가에 따른 임계전류 및 미세조직 변화 (Influence of Ge addition on phase formation and electromagnetic properties in internal tin processed $Nb_3$Sn wires)

  • 하동우;오상수;이남진;하홍수;권영길;류강식;백홍구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.496-499
    • /
    • 2000
  • In order to investigate the effect of Ge addition to the Cu Matrix on the microstructure and the critical current density, four kinds of internal tin processed Nb$_3$Sn strands with pure Cu and Cu 0.2, 0.4, 0.6 wt% Ge alloy were drawn to 0.8 mm diameter. The microstructure and critical current of internal tin processed Nb$_3$Sn wires that were heat treated at temperatures ranging from 68$0^{\circ}C$ to 74$0^{\circ}C$ for 240 h were investigated. The Ge addition to the matrix did not make workability worse. A Ge rich layer in the Cu-Ge matrix suppressed the growth of the Nb$_3$Sn layer and promoted grain coarsening. The greater the Ge content in the matrix, the lower the net Jc result after Nb$_3$Sn reaction heat treatment. There was no significant variation in Jc observed with heat treatment temperature ranging from 68$0^{\circ}C$ to 74$0^{\circ}C$.

  • PDF

내부확산법에 의한 Nb3Sn 초전도 선재의 예비 열처리 조건에 따른 미세조직 변화 (Microstructure properties of internal tin processed Nb3Sn superconducting wires with pre-heating condition)

  • 하동우;오상수;하홍수;이남진;류강식;한일용;이준석
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 1999년도 제1회 학술대회논문집(KIASC 1st conference 99)
    • /
    • pp.14-17
    • /
    • 1999
  • Four designed $Nb_{3}$Sn superconductors have been fabricated in order to investigate the effect of pre-heat treatment for internal tin process. 3 types of sub-elements and 2 types of Sn reservers were fabricated. Diffusion of Sn is better in the strand divided Sn equally than in the strand had one large Sn reserver during pre heat-treatment.

  • PDF

Ge를 첨가한 Nb$_3$Sn 초전도 선에서의 교류손실 및 미세조직 변화 (Influence of Ge addition on AC loss and micro-structure in $Nb_{3}Sn$ wires)

  • 하도우;이남진;오상수;하홍수;송규정;권영길;류강식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.104-107
    • /
    • 2001
  • In order to investigate the effect of Ge addition to the Cu matrix on the microstructure and the critical current density, four kinds of internal tin processed Nb$_3$Sn strands with pure Cu and Cu 0.2, 0.4, 0.6 wt % Ge alloys were drawn to 0.8 mm diameter. The microstructure and critical current of internal tin processed Nb$_3$Sn wires that were heat treated at temperatures ranging from 68$0^{\circ}C$ to 74$0^{\circ}C$ for 240h were investigated. The Ge addition to the matrix did not make workability worse. A Ge rich layer in the Cu-Ge matrix suppressed the growth of the Nb$_3$Sn layer and promoted grain coarsening. The greater the Ge content in the matrix, the lower the net Jc result after Nb$_3$sn reaction heat treatment. There was no significant variation in Jc observed with heat treatment temperature ranging from 68$0^{\circ}C$ to 74$0^{\circ}C$. The values of AC loss of Ge added wires were decreased to 40 % compare with no addition wire. Low AC loss was due to segregation of Ge rich layer in the Cu-Ge matrix. If Ge added wire with thin Nb filaments were fabricated, slow diffusion rate of Sn would be overcome and decreased AC loss that is weak Point of internal tin method.

  • PDF

내부확산법으로 제조한 $Nb_3Sn$ 초전도 선재의 초전도 특성 (Superconducting properties of internal tin processed $Nb_3Sn$ superconducting wires)

  • 하동우;오상수;하홍수;이남진;류강식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 D
    • /
    • pp.1556-1558
    • /
    • 1999
  • $Nb_3Sn$ superconducting wires were fabricated in order to investigate the effect of pre-heat treatment for internal tin process. 2 types of Sn reservoir were fabricated. One was arranged one large Sn reservoir in the center of wire, the other arranged several Sn reservoirs inthe wire. Diffusion of Sn is better in the strand divided Sn equally than in the strand had one large Sn reservoir during pre heat-treatment. Critical current was better in the wires divided Sn reservoirs uniformly after whole heat treatment.

  • PDF

내부 확산법에 의한 $Nb_{3}Sn$ 초전도 선재에서 부분 가열이 초전도 특성에 미치는 영향 (The effect of local heating on superconductivities in internal tin Processed $Nb_{3}Sn$ wires)

  • 하동우;오상수;하홍수;이남진;권영길;류강식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.876-878
    • /
    • 1999
  • Internal tin processed Nb3Sn wires with different diameter were locally heated before reaction heat treatment. Local heating at the intermediate state of drawing process decreased the superconducting properties and workability. When the local heating temperatures were higher than melting point of Sn, non-Cu Jc's decreased significantly.

  • PDF

소듐 이온전지용 주석 음극의 안정화를 위한 PVdF 옥세틱 구조의 영향 (Effect of Auxetic Structure of PVdF on Tin Anode Stability for Na-ion Batteries)

  • 박진수
    • 한국분말재료학회지
    • /
    • 제25권6호
    • /
    • pp.507-513
    • /
    • 2018
  • This study investigates the viability of using a Na-ion battery with a tin(Sn) anode to mitigate the vulnerability caused by volume changes during discharge and charge cycling. In general, the volume changes of carbon material do not cause any instability during intercalation into its layer structure. Sn has a high theoretical capacity of $847mAh\;g^{-1}$. However, it expands dramatically in the discharge process by alloying Na-Sn, placing the electrode under massive internal stress, and particularly straining the binder over the elastic limit. The repeating strain results in loss of active material and its electric contact, as well as capacity decrease. This paper expands the scope of fabrication of Na-ion batteries with Sn by fabricating the binder as an auxetic structure with a unique feature: a negative Poisson ratio (NPR), which increases the resistance to internal stress in the Na-Sn alloying/de-alloying processes. Electrochemical tests and micrograph images of auxetic and common binders are used to compare dimensional and structural differences. Results show that the capacity of an auxetic-structured Sn electrode is much larger than that of a Sn electrode with a common-structured binder. Furthermore, using an auxetic structured Sn electrode, stability in discharge and charge cycling is obtained.

Comparisons of internal self-field magnetic flux densities between recent Nb3Sn fusion magnet CICC cable designs

  • Kwon, S.P.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권3호
    • /
    • pp.10-20
    • /
    • 2016
  • The Cable-In-Conduit-Conductor (CICC) for the ITER tokamak Central Solenoid (CS) has undergone design change since the first prototype conductor sample was tested in 2010. After tests showed that the performance of initial conductor samples degraded rapidly without stabilization, an alternate design with shorter sub-cable twist pitches was tested and discovered to satisfy performance requirements, namely that the minimum current sharing temperature ($T_{cs}$) remained above a given limit under DC bias. With consistent successful performance of ITER CS conductor CICC samples using the alternate design, an attempt is made here to revisit the internal electromagnetic properties of the CICC cable design to identify any correlation with conductor performance. Results of this study suggest that there may be a simple link between the $Nb_3Sn$ CICC internal self-field and its $T_{cs}$ performance. The study also suggests that an optimization process should exist that can further improve the performance of $Nb_3Sn$ based CICC.

대형 빌렛 제조에 의한 Nb$_3$Sn 초전도 선재의 가공 및 특성 연구 (Fabrication and properties of Nb$_3$Sn superconducting wire from large billet stage)

  • 하동우;오상수;하홍수;이남진;권영길;류강식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.806-809
    • /
    • 2000
  • A key technology for achieving commercial Nb$_3$Sn superconducting wires may be driven from fabrication Process of big-scale billets. Sub-element billet with diameter of 200 mm was designed and fabricated. This billet was hot-extruded and drawn. Cu stabilizer tube, Nb barrier tube and 19 sub-elements inserted Sn core were composed for strand. There was no breakage in the strand that was constituted with annealed sub-element. It was need that billet had to treat HIP because of remove of voids and goad contact between Cu and Nb filaments. Ta wound sheet was better than Ta tube thor barrier in the strand. Ic of the Nb$_3$Sn wire at 127, 4.2K was over than 120 A.

  • PDF

Electroplating process for the chip component external electrode

  • Lee, Jun-Ho
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2000년도 추계학술발표회 초록집
    • /
    • pp.1-2
    • /
    • 2000
  • In chip plating, several parameters must be taken into consideration. Current density, solution concentration, pH, solution temperature, components volume, chip and media ratio, barrel geometrical shape were most likely found to have an effect to the process yields. The 3 types of barrels utilized in chip plating industry are the onventional rotating barrel, vibrational barrel(vibarrel), and the centrifugal type. Conventional rotating barrel is a close type and is commonly used. The components inside the barrel are circulated by the barrel's rotation at a horizontal axis. Process yield has known to have higher thickness deviation. The vibrational barrel is an open type which offers a wide exposure to electrolyte resulting to a stable thickness deviation. It rotates in a vertical axis coupled with multi-vibration action to facilitate mixed up and easy transportation of components. The centrifugal barrel has its plated work centrifugally compacted against the cathode ring for superior electrical contact with simultaneous rotary motion. This experiment has determined the effect of barrel vibration intensity to the plating thickness distribution. The procedures carried out in the experiment involved the overall plating process., cleaning, rinse, Nickel plating, Tin-Lead plating. Plating time was adjusted to meet the required specification. All other parameters were maintained constant. Two trials were performed to confirm the consistency of the result. The thickness data of the experiment conducted showed thatbthe average mean value obtained from higher vibrational intensity is nearer to the standard mean. The distribution curve shown has a narrower specification limits and it has a reduced variation around the target value. Generally, intensity control in vi-barrel facilitates mixed up and easy transportation of components. However, it is desirable to maintain an optimum vibration intensity to prevent solution intrusion into the chips' internal electrode. A cathodic reaction can occur in the interface of the external and internal electrode. 2H20 + e $\rightarrow$M/TEX> 20H + H2.. Hydrogen can penetrate into the body and create pressure which can cause cracks. At high intensity, the chip's motion becomes stronger, its contact between each other is delayed and so plating action is being controlled. However, the strong impact created by its collision can damage the external electrode's structure there by resulting to bad plating condition.

  • PDF