DOI QR코드

DOI QR Code

Comparisons of internal self-field magnetic flux densities between recent Nb3Sn fusion magnet CICC cable designs

  • Kwon, S.P. (National Fusion Research Institute)
  • Received : 2016.08.01
  • Accepted : 2016.09.24
  • Published : 2016.09.30

Abstract

The Cable-In-Conduit-Conductor (CICC) for the ITER tokamak Central Solenoid (CS) has undergone design change since the first prototype conductor sample was tested in 2010. After tests showed that the performance of initial conductor samples degraded rapidly without stabilization, an alternate design with shorter sub-cable twist pitches was tested and discovered to satisfy performance requirements, namely that the minimum current sharing temperature ($T_{cs}$) remained above a given limit under DC bias. With consistent successful performance of ITER CS conductor CICC samples using the alternate design, an attempt is made here to revisit the internal electromagnetic properties of the CICC cable design to identify any correlation with conductor performance. Results of this study suggest that there may be a simple link between the $Nb_3Sn$ CICC internal self-field and its $T_{cs}$ performance. The study also suggests that an optimization process should exist that can further improve the performance of $Nb_3Sn$ based CICC.

Keywords

References

  1. N. Mitchell, A. Devred, P. Libeyre, B. Lim, F. Savary, and ITER MAGNET DIVISION, "The ITER magnets: design and construction status," IEEE Trans. Appl. Supercond., vol. 22, no. 3, Art. ID. 4200809, 2012.
  2. P. Libeyre, D. Bessette, M. Jewell, C. Jong, C. Lyraud, F. Rodriguez-Mateos, K. Hamada, W. Reiersen, N. Martovetsky, C. Rey, R. Hussung, S. Litherland, K. Freudenberg, L. Myatt, E. Dalder, R. Reed, and S. Sgobba, "Addressing the technical challenges for the construction of the ITER central solenoid," IEEE Trans. Appl. Supercond., vol. 22, no. 3, Art. ID. 4201104, 2012.
  3. D. Everitt, W. Reiersen, N. Martovetsky, R. Hussung, S. Litherland, K. Freudenberg, L. Myattl, D. Hatfield, M. Cole, D. K. Irick, R. Reed, C. Lyraud, P. Libeyre, D. Bessette, C. Jong, N. Mitchell, F. Rodriguez-Mateos, and N. Dolgetta, "ITER central solenoid design," presented at the 25th Symp. Fusion Eng., San Francisco, June 2013.
  4. Y. Nabara, T. Hemmi, H. Kajitani, H. Ozeki, M. Iguchi, Y. Nunoya, T. Isono, Y. Takahashi, K. Matsui, N. Koizumi,M. Oshikiri, Y. Uno, F. Tsutsumi, H. Nakajima, K. Okuno, K. Sedlak, B. Stepanov, and P. Bruzzone, "Examination of $Nb_3Sn$ conductors for ITER central solenoids," IEEE Trans. Appl. Supercond., vol. 23, no. 3, Art. ID. 4801604, 2013.
  5. T. Hemmi, Y. Nunoya, Y. Nabara, M. Yoshikawa, K. Matsui, H. Kajitani, K. Hamada, T. Isono, Y. Takahashi, N. Koizumi, H. Nakajima, B. Stepanov, and P. Bruzzone, "Test results and investigation of Tcs degradation in Japanese ITER CS conductor samples," IEEE Trans. Appl. Supercond., vol. 22, no. 3, Art. ID. 4803305, 2012.
  6. A. Devred, I. Backbier, D. Bessette, G. Bevillard, M. Gardner, C. Jong, F. Lillaz, N. Mitchell, G. Romano, and A. Vostner, "Challenges and status of ITER conductor production," Supercond. Sci. Technol., vol. 27, no. 4, Art. ID. 044001, 2014.
  7. A. Devred, D. Bessette, P. Bruzzone, K. Hamada, T. Isono, N. Martovetsky, N. Mitchell, Y. Nunoya, K. Okuno, I. Pong, W. Reiersen, C. M. Rey, B. Stepanov, Y. Takahashi, and A. Vostner, "Status of conductor qualification for the ITER central solenoid," IEEE Trans. Appl. Supercond., vol. 23, no. 3, Art. ID. 6001208, 2013.
  8. P. Bruzzone, A. Anghel, A. Fuchs, G. Pasztor, B. Stepanov, M. Vogel, and G. Vecsey, "Upgrade of operating range for SULTAN test facility," IEEE Trans. Appl. Supercond., vol. 12, no. 1, pp. 520-523, 2002. https://doi.org/10.1109/TASC.2002.1018457
  9. P. Bruzzone, B. Stepanov, R. Wesche, C. Calzolaio, S. March, and M. Vogel, "Operation and test results from the SULTAN test facility," IEEE Trans. Appl. Supercond., vol. 22, no. 3, Art. ID. 9501704, 2012.
  10. M. Breschi, A. Devred, M. Casali, D. Bessette, M. C. Jewell, N. Mitchell, I. Pong, A. Vostner, P. Bruzzone, B. Stepanov, T. Boutboul, N. Martovetsky, K. Kim, Y. Takahashi, V. Tronza, and W. Yu, "Results of the TF conductor performance qualification samples for the ITER project," Supercond. Sci. Technol., vol. 25, no. 9, Art. ID. 095004, 2012.
  11. A. Nijhuis and Y. Ilyin, "Transverse load optimization in $Nb_3Sn$ CICC design; influence of cabling, void fraction and strand stiffness," Supercond. Sci. Technol., vol. 19, no. 9, pp. 945-962, 2006. https://doi.org/10.1088/0953-2048/19/9/011
  12. A. Nijhuis, G. Rolando, C. Zhou, E. P. A. van Lanen, J. van Nugteren, R. P. Pompe van Meerdervoort, H. J. G. Krooshoop, W. A. J. Wessel, A. Devred, A. Vostner, and I. Pong, "Optimization of interstrand coupling loss and transverse load degradation in ITER $Nb_3Sn$ CICCs," IEEE Trans. Appl. Supercond., vol. 23, no. 3, Art. ID. 4201206, 2013.
  13. D. Bessette, "Design of a $Nb_3Sn$ cable-in-conduit conductor to withstand the 60 000 electromagnetic cycles of the ITER central solenoid," IEEE Trans. Appl. Supercond., vol. 24, no. 3, Art. ID. 4200505, 2014.
  14. Y. Takahashi, Y. Nabara, H. Ozeki, T. Hemmi, Y. Nunoya, T. Isono, K. Matsui, K. Kawano, M. Oshikiri, Y. Uno, F. Tsutsumi, K. Shibutani, T. Kawasaki, K. Okuno, Y. Murakami, M. Tani, G. Sato, Y. Nakata, and M. Sugimoto, "Cabling technology of $Nb_3Sn$ conductor for ITER central solenoid," IEEE Trans. Appl. Supercond., vol. 24, no. 3, Art. ID. 4802404, 2014.
  15. T. Suwa, Y. Nabara, H. Ozeki, T. Hemmi, T. Isono, Y. Takahashi, K. Kawano, M. Oshikiri, F. Tsutsumi, K. Shibutani, Y. Nunoya, K. Okuno, K.-H. Sim, P.-Y. Park, K. Jang, J.-S. Lee, I.-Y. Han, S. P. Kwon, S.-H. Park, K. Sedlak, B. Stepanov, and P. Bruzzone, "Analysis of internal-tin $Nb_3Sn$ conductors for ITER central solenoid," IEEE Trans. Appl. Supercond., vol. 25, no. 3, Art. ID. 4201704, 2015.
  16. Y. Nabara, T. Hemmi, H. Kajitani, H. Ozeki, T. Suwa, M. Iguchi, Y. Nunoya, T. Isono, K. Matsui, N. Koizumi, F. Tsutsumi, Y. Uno, M. Oshikiri, K. Shibutani, Y. Takahashi, K. Okuno, Y. Murakami, T. Miyatake, M. Sugimoto, A. Takagi, Y. Nakada, K. Miyashita, K. Sedlak, B. Stepanov, and P. Bruzzone, "Impact of cable twist pitch on Tcs-degradation and AC loss in $Nb_3Sn$ conductors for ITER central solenoids," IEEE Trans. Appl. Supercond., vol. 24, no. 3, Art. ID. 4200705, 2014.
  17. Change of CS strand and cable parameters, ITER International Organization, St. Paul-lez-Durance, France, PCR-509 UID_ETGT7U, Oct. 2013.
  18. A. Devred, I. Backbier, D. Bessette, G. Bevillard, M. Gardner, M. Jewell, N. Mitchell, I. Pong, and A. Vostner, "Status of ITER conductor development and production," IEEE Trans. Appl. Supercond., vol. 22, no. 3, Art. ID. 4804909, 2012.
  19. Technical Specification Annex B to Procurement Arrangement 1.1.P6B.JA.01, ITER International Organization, St. Paul-lez-Durance, France, IDM Doc. ITER_D_2ZQ7Q9 v1.5, Nov. 2009.
  20. C. Sanabria, P. J. Lee, W. Starch, I. Pong, A. Vostner, M. C. Jewell, A. Devred, and D. C. Larbalestier, "Evidence that filament fracture occurs in an ITER toroidal field conductor after cyclic Lorentz force loading in SULTAN," Supercond. Sci. Technol., vol. 25, no. 7, Art. ID. 075007, 2012.
  21. A. Nijhuis, Y. Miyoshi, M. C. Jewell, W. Abbas, and W. A. J. Wessel, "Systematic study on filament fracture distribution in ITER $Nb_3Sn$ strands," IEEE Trans. Appl. Supercond., vol. 19, no. 3, pp. 2628-2632, 2009. https://doi.org/10.1109/TASC.2009.2018082
  22. A. Nijhuis, Y. Ilyin, S. Wessel, E. Krooshoop, L. Feng, and Y. Miyoshi, "Summary of ITER TF $Nb_3Sn$ strand testing under axial strain, spatial periodic bending and contact stress," IEEE Trans. Appl. Supercond., vol. 19, no. 3, pp. 1516-1520, 2009. https://doi.org/10.1109/TASC.2009.2017920
  23. A. Nijhuis and W. M. de Rapper, "Solution for Lorentz forces response and degradation in $Nb_3Sn$ cable in conduit conductors; verification of cabling effect," IEEE Trans. Appl. Supercond., vol. 18, no. 2, pp. 1491-1495, 2008. https://doi.org/10.1109/TASC.2008.920831
  24. A. Nijhuis, E. P. A. van Lanen, and G. Rolando, "Optimization of ITER $Nb_3Sn$ CICCs for coupling loss, transverse electromagnetic load and axial thermal contraction," Supercond. Sci. Technol., vol. 25, no. 1, Art. ID. 015007, 2012.
  25. A. Nijhuis, Y. Ilyin, W. Abbas, B. ten Haken, and H. H. J. ten Kate, "Performance of an ITER CS1 model coil conductor under transverse cyclic loading up to 40,000 cycles," IEEE Trans. Appl. Supercond., vol. 14, no. 2, pp. 1489-1494, 2004. https://doi.org/10.1109/TASC.2004.830666
  26. N. Mitchell, "Assessment of conductor degradation in the ITER CS insert coil and implications for the ITER conductors," Supercond. Sci. Technol., vol. 20, no. 1, pp. 25-34, 2007. https://doi.org/10.1088/0953-2048/20/1/005
  27. C. Calzolaio and P. Bruzzone, "Analysis of the CICC performance through the measurement of the thermal strain distribution of the $Nb_3Sn$ filaments in the cable cross section," IEEE Trans. Appl. Supercond., vol. 24, no. 3, Art. ID. 4802204, 2014.
  28. S. P. Kwon, S.-H. Park, W. Park, H. Choi, Y. J. Ma, Y.-H. Seo, B. Stepanov, and P. Bruzzone, "Manufacturing and preliminary performance expectations of $Nb_3Sn$ based conductors allocated for the first ITER TF coil with CICC from Korea," IEEE Trans. Appl. Supercond., vol. 24, no. 3, Art. ID. 4801605, 2014.
  29. I.-Y. Han, Nexans Korea, Cheongju, Chungcheongbuk-do, 28183, Republic of Korea, personal communication, 2013.
  30. G. Pasztor, P. Bruzzone, A. Anghel, and B. Stepanov, "An alternative CICC design aimed at understanding critical performance issues in $Nb_3Sn$ conductors for ITER," IEEE Trans. Appl. Supercond., vol. 14, no. 2, pp. 1527-1530, 2004. https://doi.org/10.1109/TASC.2004.830686
  31. J. R. Moser and R. F. Spencer, Jr., "Predicting the magnetic fields from a twisted-pair cable," IEEE Trans. Electromagn. Compat., vol. EMC-10, no. 3, pp. 324-329, 1968. https://doi.org/10.1109/TEMC.1968.302936
  32. Y. J. Chen and J. P. Freidberg, "A method for modeling the winding pattern of a large scale superconducting cable," IEEE Trans. Magn., vol. 32, no. 5, pp. 5145-5147, 1996. https://doi.org/10.1109/20.539518
  33. J. Feng, "A cable twisting model and its application in CSIC multi-stage cabling structure," Fusion Eng. Design, vol. 84, no. 12, pp. 2084-2092, 2009. https://doi.org/10.1016/j.fusengdes.2009.01.015
  34. A. S. Nemov, D. P. Boso, I. B. Voynov, A. I. Borovkov, and B. A. Schrefler, "Generalized stiffness coefficients for ITER superconducting cables, direct FE modeling and initial configuration," Cryogenics, vol. 50, no. 5, pp. 304-313, 2010. https://doi.org/10.1016/j.cryogenics.2009.11.006
  35. J. Qin, L. L. Warnet, Y. Wu, and A. Nijhuis, "CORD, a novel numerical mechanical model for $Nb_3Sn$ CICCs," IEEE Trans. Appl. Supercond., vol. 21, no. 3, pp. 2046-2049, 2011. https://doi.org/10.1109/TASC.2010.2092738
  36. E. P. A. van Lanen, A. Nijhuis, "JackPot: a novel model to study the influence of current non-uniformity and cabling patterns in cable-in-conduit conductors," Cryogenics, vol. 50, no. 3, pp. 139-148, 2010. https://doi.org/10.1016/j.cryogenics.2009.08.005
  37. M. Breschi, P. L. Ribani, H. Bajas, and A. Devred, "Modeling of the electro-mechanical behavior of ITER $Nb_3Sn$ cable in conduit conductors," Supercond. Sci. Technol., vol. 25, no. 5, Art. ID. 054005, 2012.
  38. S. P. Kwon, "A simplified model of the superconducting cable of the ITER central solenoid conductor under DC bias conditions," presented at the 24th Magnet Technology Conf., Seoul, Rep. of Korea, 2015.
  39. L. Muzzi, G. De Marzi, A. Di Zenobio, and A. della Corte, "Cable-in-conduit conductors: lessons from the recent past for future developments with low and high temperature superconductors," Supercond. Sci. Technol., vol. 28, no. 5, Art. ID. 053001, 2015.
  40. P. Bruzzone, M. Bagnasco, M. Calvi, F. Cau, D. Ciazynski, A. della Corte, A. Di Zenobio, L. Muzzi, A. Nijhuis, E. Salpietro, L. Savoldi Richard, S. Turtu, A. Vostner, R. Wesche, and R. Zanino, "Test results of two European ITER TF conductor samples in SULTAN," IEEE Trans. Appl. Supercond., vol. 18, no. 2, pp. 1088-1091, 2008. https://doi.org/10.1109/TASC.2008.922268
  41. K. Sedlak, P. Bruzzone, B. Stepanov, A. den Ouden, J. Perenboom, A. della Corte, L. Muzzi, A. Di Zenobio, and F. Quagliata, "Test of the MF-CICC conductor designed for the 12-T outsert coil of the HFML 45-T hybrid magnet," IEEE Trans. Appl. Supercond., vol. 26, no. 4, Art. ID. 4300305, 2016.
  42. P. Bruzzone, B. Stepanov, R. Wesche, A. della Corte, L. Affinito, M. Napolitano, and A. Vostner, "Test results of a $Nb_3Sn$ cable-in-conduit conductor with variable pitch sequence," IEEE Trans. Appl. Supercond., vol. 19, no. 3, pp. 1448-1451, 2009. https://doi.org/10.1109/TASC.2009.2018762
  43. A. della Corte, V. Corato, A. Di Zenobio, C. Fiamozzi Zignani, L Muzzi, G. M. Polli, L. Reccia, S. Turtu, P. Bruzzone, E. Salpietro, and A. Vostner, "Successful performances of the EU-AltTF sample, a large size $Nb_3Sn$ cable-in-conduit conductor with rectangular geometry," Supercond. Sci. Technol., vol. 23, no. 4, Art. ID. 045028, 2010.
  44. G. Rolando, A. Devred, and A. Nijhuis, "Minimizing coupling loss by selection of twist pitch lengths in multi-stage cable-in-conduit conductors," Supercond. Sci. Technol., vol. 27, no. 1, Art. ID. 015006, 2014.
  45. S. Oh, S.-H. Park, C. Lee, Y. Chang, K. Kim, and P.-Y. Park, "Strain dependence of critical current in internal tin process $Nb_3Sn$ strands," IEEE Trans. Appl. Supercond., vol. 15, no. 2, pp. 3462-3465, 2005. https://doi.org/10.1109/TASC.2005.849058
  46. S. P. Kwon, K.-H. Sim, Y. J. Ma, S.-H. Park, P.-Y. Park, I.-S. Shin, H. Choi, Y.-H. Seo, K.-H. Jang, and W. Park, "Prototype $Nb_3Sn$ superconducting strand for ITER CS coil conductor produced in Korea using the internal-tin route," IEEE Trans. Appl. Supercond., vol. 25, no. 3, Art. ID. 4201106, 2015.
  47. N. C. van den Eijnden, A. Nijhuis, Y. Ilyin, W. A. J. Wessel, and H. H. J. ten Kate, "Axial tensile stress-strain characterization of ITER model coil type $Nb_3Sn$ strands in TARSIS," Supercond. Sci. Technol., vol. 18, no. 11, pp. 1523-1532, 2005. https://doi.org/10.1088/0953-2048/18/11/020
  48. N. Mitchell, "Modeling of the effect of $Nb_3Sn$ strand composition on thermal strains and superconducting performance," IEEE Trans. Appl. Supercond., vol. 15, no. 2, pp. 3572-3576, 2005. https://doi.org/10.1109/TASC.2005.849363
  49. N. Mitchell, "Analysis of the effect of $Nb_3Sn$ strand bending on CICC superconductor performance," Cryogenics, vol. 42, no. 5, pp. 311-325, 2002. https://doi.org/10.1016/S0011-2275(02)00041-3
  50. N. Mitchell, "Mechanical and magnetic load effects in $Nb_3Sn$ cable-in-conduit conductors," Cryogenics, vol. 43, no. 3-5, pp. 255-270, 2003. https://doi.org/10.1016/S0011-2275(03)00043-2
  51. N. Mitchell, "Finite element simulations of elasto-plastic processes in $Nb_3Sn$ strands," Cryogenics, vol. 45, no. 7, pp. 501-515, 2005. https://doi.org/10.1016/j.cryogenics.2005.06.003
  52. A. Nijhuis, Y. Ilyin, and W. A. J. Wessel, "Spatial periodic contact stress and critical current of a $Nb_3Sn$ strand measured in TARSIS," Supercond. Sci. Technol., vol. 19, no. 11, pp. 1089-1096, 2006. https://doi.org/10.1088/0953-2048/19/11/001
  53. M. Sundareswari, S. Ramasubramanian, and M. Rajagopalan, "Elastic and thermodynamical properties of A15 $Nb_3X$ (X = Al, Ga, In, Sn and Sb) compounds - First principles DFT study," Solid State Commun., vol. 150, no. 41-42, pp. 2057-2060, 2010. https://doi.org/10.1016/j.ssc.2010.08.004
  54. P. Bruzzone, R. Wesche, and F. Cau, "Results of thermal strain and conductor elongation upon heat treatment for $Nb_3Sn$ cable-in-conduit conductors," IEEE Trans. Appl. Supercond., vol. 20, no. 3, pp. 470-473, 2010. https://doi.org/10.1109/TASC.2010.2042584

Cited by

  1. Block-Coil High-Field Dipoles Using Superconducting Cable-in-Conduit vol.28, pp.3, 2018, https://doi.org/10.1109/TASC.2018.2797915
  2. Stealth Superconducting Magnet Technology for Collider IR and Injector Requirements vol.28, pp.3, 2018, https://doi.org/10.1109/TASC.2018.2805900
  3. Comparisons and analysis on the prototype EU-DEMO TF CICC with Nb3Sn cable vol.19, pp.4, 2017, https://doi.org/10.9714/psac.2017.19.4.031
  4. Examination of design parameters affecting Nb3Sn CICC current sharing temperature using necessary condition analysis vol.34, pp.8, 2016, https://doi.org/10.1088/1361-6668/ac048f