• 제목/요약/키워드: internal and external fluid

검색결과 91건 처리시간 0.029초

90년대초 복식에 나타난 가벼움에 관한 고찰 (A Study On the Concept of Lightness in Fashion of the Early 1990's)

  • 최윤미
    • 한국의류학회지
    • /
    • 제18권5호
    • /
    • pp.727-738
    • /
    • 1994
  • It has been representing the delicate changes which express new sentiments through the floating, fluid, free look with the transparent, sheer material in fashion during the early 1990's. The concept of lightness is selected to describe the phenomenon of recent fashion. The purpose of this study is to identify the distinctive characteristics of lightness as external forms and internal meaning in fashion of the early 1990's. The data were collected from fashion magazines such as American Vogue, Italian Vogue from 1987 to 1994. The characteristics of lightness of fashion in the early 1990's are as follows; The external forms are consisted of the material such as the transparent, sheer, soft material, of slim and bell silhouette which occupying the more space in bottom, of the drapery, pleats to shape the unfitted look and is identified as the open, whole, indeterminate and planar intergration form according to the category of clothing form suggested by Belong. It is also the reflection of the social changes which is getting out of the modernity. It is the results of the dominant social state which are diffused the sensual pleasures, transitoriness.

  • PDF

순환유동층 열교환기내 유동과 열전달 특성 (Characteristics of Fluid Flow and Heat Transfer in a Fluidized Bed Heat Exchanger)

  • 안수환;이병창;김원철;이윤표
    • 설비공학논문집
    • /
    • 제14권4호
    • /
    • pp.315-323
    • /
    • 2002
  • The commercial viability of heat exchanger is mainly dependent on their long-term fouling characteristics because the fouling increases the pressure loss and degrades the thermal performance of a heat exchanger. An experimental study was performed to investigate the characteristics of fluid flow and heat transfer in a fluidized bed heat exchanger with circulating various solid particles. The present work showed that the drag force coefficients of particles in the internal flow were higher than those in the external flow, in addition, the solid particle periodically hitting the tube wall broke the thermal boundary layer, and increased the rate of heat transfer. Particularly when the flow velocity was low, the effect was more pronounced.

Effect of Brownian Motion in Heat Transfer of H2O-Cu Nanofluid using LBM

  • Li, Kui-Ming;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권7호
    • /
    • pp.981-990
    • /
    • 2010
  • The main objective of this study is to investigate the fluid flow and the heat transfer characteristics of nanofluids using multi-phase thermal LBM and to realize theenhancement of heat transfer characteristics considered in the Brownian motion. In multi-phase, fluid component($H_2O$) is driven by Boussinesq approximation, and nanoparticles component by the external force gravity and buoyancy. The effect of Brownian motion as a random movement is modified to the internal velocity of nanoparticles(Cu). Simultaneously, the particles of both the phases assume the local equilibrium temperature after each collision. It has been observed that when simulating $H_2O$-Cu nanoparticles, the heat transfer is the highest, at the particle volume fraction 0.5% of the particle diameter 10 nm. The average Nusselt number is increased approximately by 33% at the particle volume fraction 0.5% of the particle diameter 10 nm when compared with pure water.

주변 유체를 고려한 선박 충돌해석 기법 연구 (Ship Collision Analysis Technique considering Surrounding Water)

  • 이상갑;이정대
    • 대한조선학회논문집
    • /
    • 제44권2호
    • /
    • pp.166-173
    • /
    • 2007
  • Collision analysis problems between ship to ship can be generally classified into the external mechanics(outer dynamics) and internal mechanics(inner dynamics). The former can be also dealt with the concept of fluid-structure interaction and the use of rigid body dynamic program, depending on the ways handling the hydrodynamic pressure due to surrounding water. In this study, full scale ship collision simulation was carried out, such as a DWT 75,000 ton striking ship collided at right angle to the middle of a DWT 150,000 struck ship with 10 knots velocity, coupling MCOL, a rigid body mechanics program for modeling the dynamics of ships, to hydrocode LS-DYNA. It could be confirmed that more suitable damage estimation would be performed in the case of the collision simulations with consideration of surrounding water through the comparison with the collision simulation results of fixed struck ships without it. Through this study, the opportunity could be obtained to establish a more effective ship collision simulation technique between ship to ship.

용융탄산염형 연료전지의 스택구조와 온도특성 (Temperature Characteristics of the Molten Carbonate Fuel Cell Stack)

  • 이충곤;안교상;박성연;서혜경;임희천
    • 한국수소및신에너지학회논문집
    • /
    • 제15권1호
    • /
    • pp.54-61
    • /
    • 2004
  • Temperature characteristics in a stack of molten carbonate fuel cell (MCFC) have been investigated with simulation based on the computational fluid dynamics (CFD) codes and experimental way. The MCFC has generally two stack structures when the natural gas is used as fuel; one is the external reforming type and the other is internal reforming type. Computer simulation at the external reforming stack suggests that the maximum temperature in the stack depends on the gas flow length. The 2 kW MCFC stack with 25 cm gas flow length showed about $675^\circ{C}$ of maximum temperature.

삼각형 요소의 격자 세분화를 이용한 자유 표면 유동장의 유한 요소 해석 (Finite Element Analysis of Fluid Flow with Free Surface by using Grid Refinement of Triangular Elements)

  • 김기돈;양동열;정준호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.939-944
    • /
    • 2003
  • The analysis involves an adaptive grid that is created under a criterion of element categorization of filling states and locations in the total region at each time step. By using an adaptive grid wherein the elements, finer than those in internal and external regions, are distributed at the surface region through refinement and coarsening procedures, a more efficient analysis of transient fluid flow with free surface is achieved. Using the proposed numerical technique, the collapse of a dam is analyzed. The numerical results agree well with the theoretical solutions as well as with the experimental results. Through comparisons with the numerical results of several cases using different types of grids, the efficiency of the proposed technique is verified.

  • PDF

Fluid-Structure Interaction Study on Diffuser Pump With a Two-Way Coupling Method

  • Xu, Huan;Liu, Houlin;Tan, Minggao;Cui, Jianbao
    • International Journal of Fluid Machinery and Systems
    • /
    • 제6권2호
    • /
    • pp.87-93
    • /
    • 2013
  • In order to study the effect of the fluid-structure interaction (FSI) on the simulation results, the external characteristics and internal flow features of a diffuser pump were analyzed with a two-way flow solid coupling method. And the static and dynamic structure analysis of the blade was also caculated with the FEA method. The steady flow field is based on Reynolds Averaged N-S equations with standard $k-{\varepsilon}$ turbulent model, the unsteady flow field is based on the large eddy simulation, and the structure response is based on elastic transient structural dynamic equation. The results showed that the effect of FSI on the head prediction based on CFD really exists. At the same radius, the van mises stress on the nodes closed shroud and hub was larger than other nodes. A large deformation region existed near inlet side at the middle of blades. The strength of impeller satisfied the strength requirement with static stress analysis based on the fourth strength theory. The dynamic stress varied periodically with the impeller rotating. It was also found that the fundamental frequency of the dynamic stress is the rotating frequency and its harmonic frequency. The frequency of maximum stress amplitude at node 1626 was 7 times of the rotating frequency. The frequency of maximum stress amplitude at node 2328 was 14 times of the rotating frequency. No matter strength failure or fatigue failure, the root of blades near shroud is the key region to analyse.

순환유동층 열교환기의 유동특성 (Characteristics for Fluid Flow in Circulating Fluidized Heat Exchanger)

  • 이병창;안수환;김원철;배명환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권6호
    • /
    • pp.1291-1297
    • /
    • 2001
  • The commercial viability of heat exchanger is mainly dependent on their long-term fouling characteristics because the feeling increases the pressure loss and degrades the thermal performance of a heat exchanger An experimental study was performed to investigate the characteristics of fluid flow in a fluidized bed heat exchanger with circulating various solid particles. The present work showed that the drag force coefficients of particles in the internal flow were higher than in the external flow, in addition, they were lower with the shapes of particles being closer to the spherical geometries.

  • PDF

고체입자 순환유동층 열교환기의 유동특성 (Characteristics of Fluid Flow in a Solid Particle Circulating Fluidized Heat Exchanger)

  • 이병창;안수환;김원철;이윤표
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.705-710
    • /
    • 2001
  • The commercial viability of heat exchanger is mainly dependent on their long-term fouling characteristics because the fouling increases the pressure loss and degrades the thermal performance of a heat exchanger. An experimental study was performed to investigate the characteristics of fluid flow in a fluidized bed heat exchanger with circulating various solid particles. The present work showed that the drag force coefficients of particles in the internal flow were higher than in the external flow, in addition, they were lower with the shapes of particles being closer to the spherical geometries.

  • PDF

유한.경계요소법을 이용한 내부음원을 갖는 닫힌 구조물의 차음 특성 해석 (The Analysis of Transmission Characteristics of Closed Structure with Internal Source Using FEM/BEM)

  • 원성규;정의봉;서영수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.318-321
    • /
    • 2005
  • In vibro-acoustic analysis, the commercial CAE tools, such as SYSNOISE, is usually used to take into account of the coupled effects of fluid acoustics and structural vibration. The acoustic field can be solved by either FEM or BEM, while the vibration field is usually solved by FEM. The interior or exterior acoustic problems with the coupled effects of the structural boundary could be solved by the commercial tools. The commercial tools, however, could not solve the problems in case that both the interior and exterior acoustic field is coupled with the structural boundary. In this paper, a realistic method based on FEM/BEM coupling scheme is presented to analyze the acoustic radiation from the internal source in a chamber to external acoustic field through elastic structural boundary. Several numerical examples are implemented to validate the developed program.

  • PDF