• Title/Summary/Keyword: interfacial thermal resistance

Search Result 62, Processing Time 0.022 seconds

Endurance in Al Alloy Melts and Wear Resistance of Titanium Matrix Composite Shot-Sleeve for Aluminum Alloy Die-casting (Al 합금 다이캐스팅 용 타이타늄 기지 복합재료 슬리브의 내용손성 및 내마모성 평가)

  • Choi, Bong-Jae;Sung, Si-Young;Kim, Young-Jig
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.176-182
    • /
    • 2012
  • The main purpose of this study was to evaluate the endurance against Al alloy melts and wear resistance of an in-situ synthesized titanium matrix composite (TMC) sleeve for aluminum alloy die-casting. The conventional die-casting shot sleeve material was STD61 tool steel. TMCs have great thermal stability, wear and oxidation resistance. The in-situ reaction between Ti and $B_4C$ leads to two kinds of thermodynamically stable reinforcements, such as TiBw and TiCp. To evaluate the feasibility of the application to a TMCs diecasting shot sleeve, the interfacial reaction behavior was examined between Al alloys melts with TMCs and STD61 tool steel. The pin-on-disk type dry sliding wear test was also investigated for TMCs and STD61 tool steel.

Electrical Properties of CNT/Al/Cu Composite Fiber Deposited by Thermal Vacuum Evaporation (열 증착법으로 제조된 CNT/Al/Cu 복합 파이버의 전기적 특성)

  • Kim, Jong-Seok;Shin, Paik-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.105-109
    • /
    • 2021
  • CNT fiber has been in the spotlight as a conductor, but the conductivity of CNT fibers do not match that of CNT. This study reveals that the conductivity of CNT fiber can be improved by depositing Al/Cu through vacuum evaporation. Cu is commonly used for deposition on CNT fibers. But low bonding strength of the interface between CNT and Cu could be a disadvantage. To overcome this, Al was deposited on the CNT fiber for forming aluminum carbide islands to increase the interfacial bonding strength. The conductivity characteristics were improved as the deposition time increased. The resistance was measured as a function of temperature, demonstrating that the temperature coefficient of resistance (TCR) is improved to be 241 ppm/℃ in comparison with that of as-received CNT fibers at -1,251 ppm/℃, when the CNT fibers are deposited with Al and Cu, respectively, for 90s and for 540s.

Conduction Properties of NitAI Ohmic Contacts to AI-implanted p-type 4H-SiC (AI 이온 주입된 p-type 4H-SiC에 형성된 Ni/AI 오믹접촉의 전기 전도 특성)

  • Joo, Seong-Jae;Song, Jae-Yeol;Kang, In-Ho;Bahng, Wook;Kim, Sang-Cheol;Kim, Nam-Kyun;Lee, Yong-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.9
    • /
    • pp.717-723
    • /
    • 2009
  • Ni/Al ('/' denotes deposition sequence) contacts were deposited on Al-implanted 4H-SiC for ohmic contact formation, and the conduction properties were characterized and compared with those of Ni-only contacts. The thicknesses of the Ni and Al thin film were 30 nm and 300 nm, respectively, and the films were sequentially deposited bye-beam evaporation without vacuum breaking. Rapid thermal anneal (RTA) temperature was varied as follows : $840^{\circ}C$, $890^{\circ}C$, and $940^{\circ}C$. The specific contact resistivity of the Ni contact was about $^{\sim}2\;{\pm}\;10^{-2}\;{\Omega}{\cdot}cm^2$, However, with the addition of Al overlayer, the specific contact resistivity decreased to about $^{\sim}2\;{\pm}\;10^{-4}\;{\Omega}{\cdot}cm^2$, almost irrespective of RTA temperature. X-ray diffraction (XRD) analysis of the Ni contact confirmed the existence of various Ni silicide phases, while the results of Ni/Al contact samples revealed that Al-contaning phases such as $Al_3Ni$, $Al_3Ni_2$, $Al_4Ni_3$, and $Ab_{3.21}Si_{0.47}$ were additionally formed as well as the Ni silicide phases. Energy dispersive spectroscopy (EDS) spectrum showed interfacial reaction zone mainly consisting of Al and Si at the contact interface, and it was also shown that considerable amounts of Si and C have diffused toward the surface. This indicates that contact resistance lowering of the Ni/Al contacts is related with the formation of the formation of interfacial reaction zone containing Al and Si. From these results, possible mechanisms of contact resistance lowering by the addition of Al were discussed.

Gold functionalized-graphene oxide-reinforced acrylonitrile butadiene rubber nanocomposites for piezoresistive and piezoelectric applications

  • Mensah, Bismark;Kumar, Dinesh;Lee, Gi-Bbeum;Won, Joohye;Gupta, Kailash Chandra;Nah, Changwoon
    • Carbon letters
    • /
    • v.25
    • /
    • pp.1-13
    • /
    • 2018
  • Gold functionalized graphene oxide (GOAu) nanoparticles were reinforced in acrylonitrile-butadiene rubbers (NBR) via solution and melt mixing methods. The synthesized NBR-GOAu nanocomposites have shown significant improvements in their rate of curing, mechanical strength, thermal stability and electrical properties. The homogeneous dispersion of GOAu nanoparticles in NBR has been considered responsible for the enhanced thermal conductivity, thermal stability, and mechanical properties of NBR nanocomposites. In addition, the NBR-GOAu nanocomposites were able to show a decreasing trend in their dielectric constant (${\varepsilon}^{\prime}$) and electrical resistance on straining within a range of 10-70%. The decreasing trend in ${\varepsilon}^{\prime}$ is attributed to the decrease in electrode and interfacial polarization on straining the nanocomposites. The decreasing trend in electrical resistance in the nanocomposites is likely due to the attachment of Au nanoparticles to the surface of GO sheets which act as electrical interconnects. The Au nanoparticles have been proposed to function as ball rollers in-between GO nanosheets to improve their sliding on each other and to improve contacts with neighboring GO nanosheets, especially on straining the nanocomposites. The NBR-GOAu nanocomposites have exhibited piezoelectric gauge factor (${GF_{\varepsilon}}^{\prime}$) of ~0.5, and piezo-resistive gauge factor ($GF_R$) of ~0.9 which clearly indicated that GOAu reinforced NBR nanocomposites are potentially useful in fabrication of structural, high temperature responsive, and stretchable strain-sensitive sensors.

Improvement of Impact Resistance of B4C Tile Inserted B4Cp/Al7075 Hybrid Composites Through Interface Control (B4C tile 삽입 B4Cp/Al7075 하이브리드 복합재의 계면 제어를 통한 내충격 특성의 향상)

  • Park, Jongbok;Lee, Taegyu;Lee, Donghyun;Cho, Seungchan;Lee, Sang-Kwan;Hong, Soon Hyung;Ryu, Ho Jin
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.235-240
    • /
    • 2020
  • In this study, in order to improve the impact resistance of the B4C tile-inserted B4Cp/Al7075 hybrid composite, a control method of the B4C/Al7075 interface was developed and the characteristics of the controlled interface were analyzed. B2O3, Ni, and Si were coated on the B4C tile surface using additional thermal oxidation, electroless plating, and plasma spraying. The coated B4C tile is inserted into the B4Cp/Al7075 composite material using the liquid pressurization method. Interfacial energy, bonding strength, and impact resistance were measured to analyze the effect of the coating. All coatings enhanced interfacial energy, bonding strength, and impact resistance, and in particular, it was confirmed that the impact resistance increased by 86.8% when B2O3 coating was used. This study is significant in developing and analyzing a core surface treatment method that improves the performance of B4C/Al series composites, which are attracting attention as next-generation lightweight amour and bulletproof materials.

The Interfacial Reactions and Reliability of SnAgCu Solder Joints under Thermal Shock Cycles (열충격 사이클에 따른 SnAgCu 솔더별 솔더 접합부의 신뢰성 및 계면반응)

  • Oh, Chulmin;Park, Nochang;Han, Changwoon;Bang, Mansoo;Hong, Wonsik
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.8
    • /
    • pp.500-507
    • /
    • 2009
  • Pb-free solder has recently been used in electronics in efforts to meet environmental regulations, and a number of Pb-free solder alloy choices beyond the near-eutectic SnAgCu solder are now available. With increased demand for thin and portable electronics, the high cost of alloys containing significant amounts of silver and their poor mechanical shock performance have spurred the development of low Ag SnAgCu solder, which provides improved mechanical performance at a reasonable cost. Although low Ag SnAgCu solder exhibits significantly higher fracture resistance under high-strain rates, little thermal fatigue data exist for this solder. Therefore, it is necessary to investigate thermal fatigue reliability of low Ag SnAgCu solder under variation of thermal stress in order to allow its implementation in electronic products with high reliability requirements. In this study, the reliability of Sn0.3Ag0.7Cu(SAC0307), a low Ag solder alloy, is discussed and compared with that of Sn3Ag0.5Cu(SAC305). Three sample types and six samples size are evaluated. Mechanical properties and microstructure of the solder joint are investigated under thermal shock cycles. It was observed that the mechanical strength of SAC0307 dropped slightly with thermal cycling relative to that of SAC305. This reveals that the failure mode of SAC0307 is different from that SAC305 under this critical condition.

Characteristics of Electric Resistance Dual Spot Welding Process of AZ31 Magnesium Alloy Sheets (AZ31 마그네슘 합금 판재의 전기저항 이중 스폿용접 특성)

  • Sun, Xiao-Guang;Jin, In-Tai
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.1-11
    • /
    • 2022
  • In this study, an electric resistance dual-spot welding process using a copper electrode inserted in a heating electrode is suggested for the spot welding of AZ31 magnesium sheets. This spot-welding process involves two heating methods for welding at the interfacial zone between the magnesium sheets, one of which is the heating method by thermal conduction from the heating electrode heated by the welding current induced to the steel electrode, and the other heating method uses the electric resistance between the contacted surfaces of the two sheets by the welding current induced to the copper electrode. This welding process includes the welding variables, such as the current induced in the heating electrode and the copper electrode, and the outer diameters of the heating electrode. This is because the heat conducted from the heating electrode can be maintained at a higher temperature in the welding zone, which has a slow cooling effect on the nugget of the melted metal after the welding step. The pressure exerted during the pressing of the magnesium sheets by the heating electrode can be increased around the nugget zone at the spot-welding zone. Thus, it not only reduces the warping effect of the elastoplastic deformation of sheets, but also the corona bond can make it less prone to cracking at the welded zone, thereby reducing the number of nuggets expelled out of the corona bond. In conclusion, it was known that an electric resistance dual spot welding process using the copper electrode inserted in the heating electrode can improve the welding properties in the electric resistance spot welding process of AZ31 magnesium sheets.

Behavior of $Li^{+}$ in PAN/PVDF based Polymer Electrolyte for Lithium Polymer Battery (리튬 폴리머전지용 PAN/PVDF계 고분자 전해질의 리튬 이온 거동)

  • 이재안;김상기;김종욱;구할본;박계춘
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.540-543
    • /
    • 2000
  • The purpose of this study is to research and develop solid polymer electrolyte(SPE) for Li polymer battery. The temperature dependence of conductivity, impedance spectroscopy and electrochemical properties of PAN/PVDF electrolytes as a function of a mixed ratio were reported for PAN/PVDF based polymer electrolyte films, which were prepared by thermal gellification method of preweighed PAN/PVDF, plasticizer and Li salt. The conductivity of PAN/PVDF electrolytes was $10^{-3}$S/cm. $PAN_{10}$$PVDF_{10}$$LiClO_4$$PC_{5}$$EC_{5}$ electrolyte has the better conductivity compared to others. The interfacial resistance behavior between the lithium electrode and PAN/PVDF based polymer electrolyte has also been investigated and compare with that between the lithium electrode and the PAN/PVDF based polymer electrolyte.

  • PDF

Improved of Mechanical Properties and Functionalization of Polycarbonate by Adding Carbon Materials (탄소재료 첨가에 의한 Polycarbonate의 기계적 물성 향상 및 기능화에 관한 연구)

  • Kim, Jeong-Keun;Choi, Sun-Ho;Go, Sun-Ho;Kwac, Lee-Ku;Kang, Sung-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.59-67
    • /
    • 2020
  • Polycarbonate thermoplastic composite materials are anisotropic and exhibit physical properties in the longitudinal direction. Therefore, the physical properties depend on the type and direction of reinforcements. The thermal conductivity, electrical conductivity, and resin impregnation can be controlled by adding carbon nanotubes to polycarbonate resin. However, the carbon fiber used as a reinforcing material is expensive, interfacial adhesion issues occur, and simulation values are different from actual values, making it difficult to perform mathematical analysis. However, carbon nanotubes have advantages such as light weight, rigidity, impact resistance, and reduced number of parts compared to metals. Due to these advantages, it has been applied to various products to reduce weight, improve corrosion resistance, and increase impact durability. As the content of carbon nanotubes or carbon fibers increases, the mechanical properties and antistatic and electromagnetic shielding performance improve. It is expected that the amount of carbon nanotubes or carbon fibers can be optimized and applied to various industrial products.

Electric Resistance Double Spot Welding Process of Dissimilar Metal Plates of Steel and Aluminum by Using Heating Dies (가열금형을 사용하는 강철과 알루미늄 이종금속판재의 전기저항 이중스폿용접)

  • Kim, T.H.;Sun, Xiaoguang;Jin, I.T.
    • Transactions of Materials Processing
    • /
    • v.27 no.1
    • /
    • pp.37-47
    • /
    • 2018
  • In this paper, a double spot welding process, utilizing electric resistance heating dies, is suggested for the spot welding of dissimilar metal plates for drawing and concurrent spot welding. This double welding process has two heating methods for the fusion welding at the interfacial zone between steel and aluminum plates, such as heating method by thermal conduction of electric resistance by welding current induced to heating dies, and heating method by electric resistance between contacted surfaces of two plates by welding current induced to copper electrode. This double welding process has welding variables such as each current induced in heating dies and in copper electrode, outer diameters of heating dies, and edge shape of copper electrode. Experiments for current conditions in welding process should be demanded in order to get successful welding strength. It was known that the welding strength could be reached to the value demanded on industry fields under such welding conditions as heating dies of outer ring dia.12mm contacted on steel plate, as heating dies of outer ring dia. 14mm contacted on aluminum plate, and as copper electrode of dia. 6.0mm, and as 3 times continuous heating method by $1^{st}$ current of 11 kA(9cycle), $2^{nd}$ current 11 kA(60cycle), $3^{rd}$ current 7 kA(60cycle) applied in steel heating dies and copper electrodes, flat edge of copper electrode, for double spot welding process of dissimilar metal plates of steel and aluminum of 1.0 mm thickness.