DOI QR코드

DOI QR Code

Electrical Properties of CNT/Al/Cu Composite Fiber Deposited by Thermal Vacuum Evaporation

열 증착법으로 제조된 CNT/Al/Cu 복합 파이버의 전기적 특성

  • Received : 2020.12.15
  • Accepted : 2021.01.12
  • Published : 2021.03.01

Abstract

CNT fiber has been in the spotlight as a conductor, but the conductivity of CNT fibers do not match that of CNT. This study reveals that the conductivity of CNT fiber can be improved by depositing Al/Cu through vacuum evaporation. Cu is commonly used for deposition on CNT fibers. But low bonding strength of the interface between CNT and Cu could be a disadvantage. To overcome this, Al was deposited on the CNT fiber for forming aluminum carbide islands to increase the interfacial bonding strength. The conductivity characteristics were improved as the deposition time increased. The resistance was measured as a function of temperature, demonstrating that the temperature coefficient of resistance (TCR) is improved to be 241 ppm/℃ in comparison with that of as-received CNT fibers at -1,251 ppm/℃, when the CNT fibers are deposited with Al and Cu, respectively, for 90s and for 540s.

Keywords

References

  1. A. Lekawa-Raus, J. Patmore, L. Kurzepa, J. Bulmer, and K. Koziol, Adv. Funct. Mater., 24, 3661 (2014). [DOI: https://doi.org/10.1002/adfm.201303716]
  2. D. Janas, Mater. Chem. Front., 2, 36 (2018). [DOI: https://doi.org/10.1039/c7qm00427c]
  3. G. Xu, J. Zhao, S. Li, X. Zhang, Z. Yong, and Q. Li, Nanoscale, 3, 4215 (2011). [DOI: https://doi.org/10.1039/c1nr10571j]
  4. S. Zhang, N. Nguyen, B. Leonhardt, C. Jolowsky, A. Hao, J. G. Park, and R. Liang, Adv. Electron. Mater., 5, 1800811 (2019). [DOI: https://doi.org/10.1002/aelm.201800811]
  5. P. M. Hannula, A. Peltonen, J. Aromaa, D. Janas, M. Lundstrom, B. P. Wilson, K. Koziol, and O. Forsen, Carbon, 107, 281 (2016). [DOI: https://doi.org/10.1016/j.carbon.2016.06.008]
  6. L. Ci, Z. Ryu, N. Y. Jin-Phillipp, and M. Rühle, Acta Mater., 54, 5367 (2006). [DOI: https://doi.org/10.1016/j.actamat.2006.06.031]
  7. G. J. Wang, Y. J. Ma, Y. P. Cai, Z. H. Cao, and X. K. Meng, Carbon, 146, 293 (2019). [DOI: https://doi.org/10.1016/j.carbon.2019.01.111]
  8. N. Behabtu, C. C. Young, D. E. Tsentalovich, O. Kleinerman, X. Wang, A.W.K. Ma, E. A. Bengio, R. F. ter Waarbeek, J. J. de Jong, R. E. Hoogerwerf, S. B. Fairchild, J. B. Ferguson, B. Maruyama, J. Kono, Y. Talmon, Y. Cohen, M. J. Otto, and M. Pasquali, Science, 339, 182 (2013). [DOI: https://doi.org/10.1126/science.1228061]
  9. C. Subramaniam, T. Yamada, K. Kobashi, A. Sekiguchi, D. N. Futaba, M. Yumura, and K. Hata, Nat. Commun., 4, 2202 (2013). [DOI: https://doi.org/10.1038/ncomms3202]
  10. J. I. Jeong and J. H. Yang, J. Korean Inst. Surf. Eng., 42, 86 (2009). [DOI: https://doi.org/10.5695/JKISE.2009.42.2.086]
  11. S. H. Lee and S. M. Jang, Trans. Korean Inst. Elect. Eng., 62, 1798 (2013). [DOI: https://doi.org/10.5370/KIEE.2013.62.12.1798]
  12. J. Alvarenga, P. R. Jarosz, C. M. Schauerman, B. T. Moses, B. J. Landi, C. D. Cress, and R. P . Raffaelle, Appl. Phys. Lett., 97, 182106 (2010). [DOI: https://doi.org/10.1063/1.3506703]
  13. C. L. Xu, B. Q. Wei, R. Z. Ma, J. Liang, X. K. Ma, and D. H. Wu, Carbon, 37, 855 (1999). [DOI: https://doi.org/10.1016/S0008-6223(98)00285-1]
  14. G. J. Wang, Y. P . Cai, Y. J. Ma, S. C. Tang, J. A. Syed, Z. H. Cao, and X. K. Meng, Nano Lett., 19, 6255 (2019). [DOI: https://doi.org/10.1021/acs.nanolett.9b02332]
  15. A. H. Barber, S. R. Cohen, and H. D. Wanger, Phys. Rev. Lett., 92, 186103 (2004). [DOI: https://doi.org/10.1103/PhysRevLett.92.186103]
  16. B. Han, E. Guo, X. Xue, Z. Zhao, L. Luo, H. Qu, T. Niu, Y. Xu, and H. Hou, Carbon, 123, 593 (2017). [DOI: https://doi.org/10.1016/j.carbon.2017.08.004]
  17. M. S. Huh, S. W. Choi, H. G. Chun, S. C. Kwon, G. H. Lee, and T. Y. Cho, J. Korean Vac. Soc., 6, 77 (1997).
  18. J. Shuai, L. Xiong, L. Zhu, and W. Li, Composites, Part A, 88, 148 (2016). [DOI: https://doi.org/10.1016/j.compositesa.2016.05.027]
  19. L. I. Maissel and R. Glang, Handbook of Thin Film Technology (McGraw-Hill, New York, 1970) p. 185.
  20. W. Lowrie, Fundamentals of Geophysics (Cambridge University Press, Zurich, 2007) p. 254.