DOI QR코드

DOI QR Code

Conduction Properties of NitAI Ohmic Contacts to AI-implanted p-type 4H-SiC

AI 이온 주입된 p-type 4H-SiC에 형성된 Ni/AI 오믹접촉의 전기 전도 특성

  • 주성재 (한국전기연구원 재료응용연구본부 에너지반도체연구센터) ;
  • 송재열 (동의대학교 전자공학과) ;
  • 강인호 (한국전기연구원 재료응용연구본부 에너지반도체연구센터) ;
  • 방욱 (한국전기연구원 재료응용연구본부 에너지반도체연구센터) ;
  • 김상철 (한국전기연구원 재료응용연구본부 에너지반도체연구센터) ;
  • 김남균 (한국전기연구원 재료응용연구본부 에너지반도체연구센터) ;
  • 이용재 (동의대학교 전자공학과)
  • Published : 2009.09.01

Abstract

Ni/Al ('/' denotes deposition sequence) contacts were deposited on Al-implanted 4H-SiC for ohmic contact formation, and the conduction properties were characterized and compared with those of Ni-only contacts. The thicknesses of the Ni and Al thin film were 30 nm and 300 nm, respectively, and the films were sequentially deposited bye-beam evaporation without vacuum breaking. Rapid thermal anneal (RTA) temperature was varied as follows : $840^{\circ}C$, $890^{\circ}C$, and $940^{\circ}C$. The specific contact resistivity of the Ni contact was about $^{\sim}2\;{\pm}\;10^{-2}\;{\Omega}{\cdot}cm^2$, However, with the addition of Al overlayer, the specific contact resistivity decreased to about $^{\sim}2\;{\pm}\;10^{-4}\;{\Omega}{\cdot}cm^2$, almost irrespective of RTA temperature. X-ray diffraction (XRD) analysis of the Ni contact confirmed the existence of various Ni silicide phases, while the results of Ni/Al contact samples revealed that Al-contaning phases such as $Al_3Ni$, $Al_3Ni_2$, $Al_4Ni_3$, and $Ab_{3.21}Si_{0.47}$ were additionally formed as well as the Ni silicide phases. Energy dispersive spectroscopy (EDS) spectrum showed interfacial reaction zone mainly consisting of Al and Si at the contact interface, and it was also shown that considerable amounts of Si and C have diffused toward the surface. This indicates that contact resistance lowering of the Ni/Al contacts is related with the formation of the formation of interfacial reaction zone containing Al and Si. From these results, possible mechanisms of contact resistance lowering by the addition of Al were discussed.

Keywords

References

  1. B. J. Baliga, 'Silicon carbide power devices', World Scientific Publishing Co. Pte. Ltd., Singapore, p.16, 2005
  2. S.-J. Kim, 'Effect on metal guard ring in breakdown characteristics of SiC Schottky barrier diode', J. of KIEEME(in Korean), Vol. 18, No. 10, p. 877, 2005 https://doi.org/10.4313/JKEM.2005.18.10.877
  3. S. Tanimoto, N. Kiritani, M. Hoshi, and H. Okushi, 'Ohmic contact structure and fabrication process applicable to practical SiC devices', Mater. Sci. Forum, Vol. 389-393, p. 879, 2002 https://doi.org/10.4028/www.scientific.net/MSF.389-393.879
  4. J. Crofton, P. G. McMullin, J. R. Williams, and M. J. Bozack, 'High-temperature ohmic contact to n-type 6H-SiC using nickel', J. Appl. Phys., Vol. 77, p. 1317, 1995 https://doi.org/10.1063/1.358936
  5. F. La Via, F. Roccaforte, A. Makhtari, V. Raineri, P. Musumeci, and L. Calcagno, 'Structural and electrical characterization of titanium and nickel silicide contacts on silicon carbide', Microelectron. Eng., Vol. 60, p. 269, 2002 https://doi.org/10.1016/S0167-9317(01)00604-9
  6. L. G. Fursin, J. H. Zhao, and M. Weiner, 'Nickel ohmic contacts to p- and n-type 4H-SiC', Electron. Lett., Vol. 37, p. 1092, 2001 https://doi.org/10.1049/el:20010738
  7. M. W. Cole and P. C. Joshi, in 'Silicon carbide : materials, processing, and devices' (edited by Z. C. Feng and J. H. Zhao), Taylor & Francis, p. 252, 2004
  8. A. Hall$\acute{e}$n, R. Nipoti, S. E. Saddow, S. Rao, and B. G. Svensson, 'Advances in selective doping of SiC via ion implantation', in : S.E. Saddow and A. Agarwal (Eds.), Advances in silicon carbide processing and applications, Artech House, Inc., Boston.London, 2004
  9. V. Heera, D. Panknin, and W. Skorupa, 'P-type doping of SiC by high dose Al implantation - problems and progress', Appl. Surf. Sci., Vol. 184, p. 307, 2001 https://doi.org/10.1016/S0169-4332(01)00510-4
  10. X. Wang, S. Soloviev, Y. Gao, G. Straty, T. Sudarshan, J. R. Williams, and J. Crofton, 'Al/Ni and Al/Ti ohmic contact to P-type SiC diffused layer', Mat. Res. Soc. Symp., Vol. 640, p. H5.19.1, 2001
  11. J. Y. Lin, S. E. Mohney, M. Smalley, J. Crofton, J. R. Williams, and T. Izaacs- Smith, 'Engineering the Al-Ti/p-SiC ohmic contact for improved performance', Mat. Res. Soc. Symp., Vol. 640, p. H7.3.1, 2001
  12. B. J. Johnson and M. A. Capano, 'Mechanism of ohmic behavior of Al/Ti contacts to p-type 4H-SiC after annealing', J. Appl. Phys., Vol. 95, p. 5616, 2004 https://doi.org/10.1063/1.1707215
  13. M. Gao, S. Tsukimoto, S. H. Goss, S. P. Tumakha, T. Onishi, M. Murakami, and L. J. Brillson, 'Role of interface layers and localized states in TiAl-based ohmic contacts to p-type 4H-SiC', J. Electron. Mater., Vol. 36, p. 277, 2007 https://doi.org/10.1007/s11664-006-0078-0
  14. R. Konishi, R. Yasukochi, O. Nakatsuka, Y. Koide, M. Moriyama, and M. Murakami, 'Development of Ni/Al and Ni/Ti/Al ohmic contact materials for p-type 4H-SiC', Mat. Sci. Eng. B, Vol. 98, p. 286, 2003 https://doi.org/10.1016/S0921-5107(03)00065-5
  15. H. Vang, M. Lazar, P. Brosselard, C. Raynaud, P. Cremillieu, J.-L. Leclercq, J.-M. Bluet, S. Scharnholz, and D. Planson, 'Ni-Al ohmic contact to p-type 4H-SiC', Superlattices and Microstructures, Vol. 40, p. 626, 2006 https://doi.org/10.1016/j.spmi.2006.08.004
  16. S.-J. Joo, J. Y. Song, I.-H. Kang, W. Bahng, S. C. Kim, and N.-K. Kim, 'Electrical characteristics of Ni/Ti/Al ohmic contacts to Al-implanted p-type 4H-SiC', J. of KIEEME(in Korean), Vol. 21, No. 11, p. 968, 2008 https://doi.org/10.4313/JKEM.2008.21.11.968
  17. D. K. Schroder, 'Semiconductor material and device characterization (2nd edition)', John Wiley & Sons, Inc., p. 154, 1998
  18. V. M. Bermudez, 'Auger and electron energy-loss study of the Al/SiC interface', Appl. Phys. Lett., Vol. 42, p. 70, 1983 https://doi.org/10.1063/1.93730
  19. K. Yasuda, T. Hayakawa, and M. Saji, 'Annealing effects of Al/n-type 6H SiC rectifying contacts', IEEE Trans. Electron Dev., Vol. ED-34, p. 2002, 1987
  20. J. C. Viala, P. Fortier, and J. Bouix, 'Stable and metastable phase equilibria in the chemical interaction between aluminum and silicon carbide', J. Mater. Sci., Vol. 25, p. 1842, 1990 https://doi.org/10.1007/BF01045395
  21. W. King and R. Dorward, 'Electrical resistivity of aluminum carbide at 990-1240K', J. Electrochem. Soc., Vol. 132, p. 388, 1985 https://doi.org/10.1149/1.2113847
  22. L. Muehlhoff, W. J. Choyke, M. J. Bozack, and John T. Yates, Jr., 'Comparative electron spectroscopic studies of surface segregation on SiC(0001) and SiC(000-1)', J. Appl. Phys., Vol. 60, p. 2842, 1986 https://doi.org/10.1063/1.337068
  23. L. Wenchang, Z. Kaiming, and X. Xide, 'An electronic structure study of single native defects in beta -SiC', J. Phys. : Condens. Matter., Vol. 5, p. 891, 1993 https://doi.org/10.1088/0953-8984/5/7/016
  24. T. Wimbauer, B. Meyer, A. Hofstaetter, A. Scharmann, and H. Overhoff, "Negatively charged Si vacancy in 4H SiC: A comparison between theory and experiment", Phys. Rev. B, Vol. 56, p. 7384, 1997 https://doi.org/10.1103/PhysRevB.56.7384
  25. J. M. Larson and J. P. Snyder, 'Overview and status of metal S/D schottky-barrier MOSFET technology', IEEE Trans. Electron. Devices, Vol. 53, p. 1048, 2006 https://doi.org/10.1109/TED.2006.871842
  26. Z. Zhang, Z. Qiu, R. Liu, M. Östling, and S.-L. Zhang, 'Schottky-barrier height tuning by means of ion implantation into preformed silicide films followed by drive-in anneal', IEEE Electron Dev. Lett., Vol. 28, p. 565, 2007 https://doi.org/10.1109/LED.2007.900295
  27. M. Sinha, E. F. Chor, and Y.-C. Yeo, 'Tuning the schottky barrier height of nickel silicide on p-silicon by aluminum segregation', Appl. Phys. Lett., Vol. 92, p. 222114, 2008 https://doi.org/10.1063/1.2940596