• Title/Summary/Keyword: interfacial change

Search Result 214, Processing Time 0.025 seconds

Development of Multiscale Simulation Technique for Multiphase Fluid System (다상 유체 시스템의 다중 스케일 시뮬레이션 기법에 관한 연구)

  • Han, Min-Sub
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.6
    • /
    • pp.569-577
    • /
    • 2010
  • A multiscale particle simulation technique that can be applied to a multiphase fluid system has been developed. In the boundary region where the macroscopic- and microscopic-scale models overlap each other, three distinctive features are introduced in the simulation. First, a wall is set up between the gas and liquid phases to separate them and match the phases respectively to the macroscopic conditions stably. Secondly, the interfacial profile is obtained near the matching region and the wall translates and rotates to accommodate the change in the liquid-vapor interfacial position in the molecular model. The contact angle thus obtained can be sent to the macroscopic model. Finally, a state of mass and temperature in the region is maintained by inserting and deleting the particles. Good matching results are observed in the cases of the complete and partial wetting fluid systems.

Effects of thermal boundary conditions and microgravity environments on physical vapor transport of $Hg_2Cl_2-Xe$ system

  • Kim, Geug-Tae;Kwon, Moo-Hyun;Lee, Kyong-Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.4
    • /
    • pp.172-183
    • /
    • 2009
  • For the effects of the nonlinear temperature profiles and reduced-gravity conditions we conduct a two-dimensional numerical modeling and simulations on the physical vapor transport processes of $Hg_2Cl_2-Xe$ system in the horizontal orientation position. Our results reveal that: (1) A decrease in aspect ratio from 5 to 2 leads to an increasingly nonuniform interfacial distribution and enhances the growth rate by one-order magnitude for normal gravity and linear wall temperature conditions. (2) Increasing the molecular weight of component B, Xenon results in a reduction in the effect of solutal convection. (3) The effect of aspect ratio affects the interfacial growth rates significantly under normal gravity condition rather than under reduced gravitational environments. (4) The transition from the convection-dominated regime to the diffusion-dominated regime ranges arises near at 0.1g$_0$ for operation conditions under consideration in this study.

Nondestructive Damage Sensing and Cure Monitoring of Carbon Fiber/Epoxyacrylate Composite with UV and Thermal Curing using Electro-Micromechanical Technique (Electro-Micromechanical 시험법을 이용한 탄소섬유 강화 Epoxyacrylate 복합재료의 UV 및 열경화에 따른 비파괴적 손상 감지능 및 경화 Monitoring)

  • Kong, Jin-Woo;Kim, Dae-Sik;Park, Joung-Man;Lee, Jae-Rock
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.261-264
    • /
    • 2002
  • Interfacial evaluation, damage sensing and cure monitoring of single carbon fiber/thermosetting composite with different curing processes was investigated using electro-micromechanical test. After curing, residual stress was monitored by measurement of electrical resistance (ER) and then it was compared to correlate with various curing processes. In thermal curing, curing shrinkage appeared significantly by matrix shrinkage and residual stress due to the difference in thermal expansion coefficient (TEC). The change in electrical resistance (ΔR) on thermal curing was higher than that on ultraviolet (UV) curing. For thermal curing, apparent modulus was the highest and reaching time until same strain was faster. So far thermal curing shows strong durability on the IFSS after boiling test.

  • PDF

Joining of Silicon Nitride to Carbon Steel using an Active Metal Alloys (활성 납재를 이용한 질화규소/탄소강 접합)

  • Choe, Yeong-Min;Jeong, Byeong-Hun;Lee, Jae-Do
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.199-204
    • /
    • 1999
  • As the engine design change to get high efficiency and performance of commercial diesel engine, surface wear of the cam follower becomes an important issues as applied load increasing at the contact face between cam follower and cam. Purpose of this study is the developing of the ceramic cam follower made of silicon nitride ceramic which is more wear resistant than the cast iron and sintered cam follower. Ceramic cam follower was made by direct brazing of thin ceramic disk to steel can follower body using active bracing alloy. Effect of joining condition on the interfacial phases and joining strength wer examined at bvarious joining temperatures, times, and cooling rates. Crowning resulted from the difference of thermal expansion coefficient after direct brazing without using any stress-relieving inter layer was measured. Interfacial phases are mainly titanium silicide and titanium nitride which are the products between active metal(Ti) in brazing alloy and silicon nitiride. Maximum joining strength of the ceramic metal joint, measured by DBS method, was 334MPa. Crowning(R) of the prototype ceramic cam follower was 1595mm. As machining for crowning is not necessary, production cost can be reduced.

  • PDF

Interface State Control of Amorphous InGaZnO Thin Film Transistor by Surface Treatment of Gate Insulator (게이트 절연막의 표면처리에 의한 비정질 인듐갈륨징크옥사이드 박막트랜지스터의 계면 상태 조절)

  • Kim, Bo-Sul;Kim, Do-Hyung;Lee, Sang-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.693-696
    • /
    • 2011
  • Recently, amorphous oxide semiconductors (AOSs) based thin-film transistors (TFTs) have received considerable attention for application in the next generation displays industry. The research trends of AOSs based TFTs investigation have focused on the high device performance. The electrical properties of the TFTs are influenced by trap density. In particular, the threshold voltage ($V_{th}$) and subthreshold swing (SS) essentially depend on the semiconductor/gate-insulator interface trap. In this article, we investigated the effects of Ar plasma-treated $SiO_2$ insulator on the interfacial property and the device performances of amorphous indium gallium zinc oxide (a-IGZO) TFTs. We report on the improvement in interfacial characteristics between a-IGZO channel layer and gate insulator depending on Ar power in plasma process, since the change of treatment power could result in different plasma damage on the interface.

Desalting enhancement for blend polyethersulfone/polyacrylonitrile membranes using nano-zeolite A

  • Mansor, Eman S.;Jamil, Tarek S.;Abdallah, Heba;Youssef, H.F.;Shaban, Ahmed M.;Souaya, Eglal R.
    • Membrane and Water Treatment
    • /
    • v.10 no.6
    • /
    • pp.451-460
    • /
    • 2019
  • Thin film composite membranes incorporated with nano-sized hydrophilic zeolite -A were successfully prepared via interfacial polymerization (IP) on porous blend PES/PAN support for water desalination. The thin film nanocomposite membranes were characterized by SEM, contact angle and performance test with 7000 ppm NaCl solution at 7bar. The results showed that the optimum zeolite loading amount was determined to be 0.1wt% with permeate flux 29LMH.NaCl rejection was improved from 69% to 92% compared to the pristine polyamide membrane where the modified PA surface was more selective than that of the pristine PA. In addition, there was no significant change in the permeate flux of the thin film nanocomposite membrane compared with that of the pristine PA in spite of the formation of the dense polyamide layer. The stability of the polyamide layer was investigated for 15 days and the optimized membrane presented the highest durability and stability.

Fabrication and Electrical Properties of Anodic Aluminum Oxide Membrane with Various Anodizing Temperatures for Biosensor (바이오센서로 응용을 위한 양극산화알루미늄의 양극산화 온도에 따른 제작 및 전기적 특성)

  • Yeo, Jin-Ho;Lee, Sung-Gap;Kim, Yong-Jun;Lee, Young-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.6
    • /
    • pp.394-398
    • /
    • 2014
  • We fabricated the electrolyte-dielectric-metal (EDM) sensor on the base of AAO (anodic aluminum oxide) template with variation of the anodizing temperature. When a surface is immersed or created in an aqueous solution, a discontinuity is formed at the interface where such physicochemical variables as electrical potential and electrolyte concentration change significantly from the aqueous phase to another phase. Because of the different chemical potentials between the two phases, charge separation often occurs at the interfacial region [1]. This interfacial region, togeter with the charged surface, is usually known as the electrical double layer (EDL) [2]. The structural and electrochemical properties of AAO sensor were investigated for applications in capacitive pH sensors. To change the thickness of the AAO template, the anodizing temperature was varied from $5^{\circ}C$ to $20^{\circ}C$, the thickness of the AAO template invreased from 300 nm to 477 nm. The pH sensitivity of sensors with the anodizing temperature of $20^{\circ}C$ showed the highest value of 56.4 mV/pH in the pH range of 3 to 11. The EDM sensor with the anodizing temperature of $20^{\circ}C$ exhibited the best long-term stability of 0.037 mV/h.

Detergency and soil Redeposition in a Drycleaning System -The Effect of Surfactant Type and Their Mixture- (드라이클리닝 시스템에서의 세척성과 재오염성 -계면활성제의 종류와 혼합이 미치는 영향-)

  • 김주연;박정희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.7
    • /
    • pp.1030-1039
    • /
    • 1999
  • The effect of surfactant mixture 9on detergency and soil redeposition in a dry-cleaning system was investigated employing Aerosol OT as an anionic surfactant and Span 80 as a nonionic surfactant. The effect of charge system on soil deposition was also investigated in order to determine the optimum condition at which soil redeposition is minimum,. Soil deposition instead of soil redeposition on cotton, polyester and wool fabrics was measured employing petroleum solvent and perchloroethylene as organic solvents. The results were as follows. 1. Surface tension or interfacial tension was not changed by the addition of any surfactant or surfactant mixtures. In petroleum solvent however interfacial tension between solrent and water decreased when surfactants were added and increased when surfactants were mixed,. 2. The maximum amount of water solubilization increased as the mole fraction of Aerosol OT increased and more water was solubilized in petroleum solvent than in perchloroethylene. 3. The detergency of cotton was greater and the soil deposition rate was lower in Span 80 solution than in Aerosol OT solution. The soil deposition on cotton fabric decreased when water was solubilized in Aersol OT solution 4. The detergency and soil deposition rate of polyester fabric did not change by the surfactant type of the addition of surfactant mixture and soil deposition rate increased bywater solubilization. 5. Soil deposition on wool fabric was very high when Arosol OT was employed in perchloroethylene and the soil deposition did not change greatly by water solubilization.

  • PDF

Prediction of Wetting and Interfacial Property of CNT Reinforced Epoxy on CF Tow Using Electrical Resistance Method (전기저항 평가법을 이용한 CNT 함유 에폭시의 탄소섬유내 젖음성 및 계면특성 예측 연구)

  • Kwon, Dong-Jun;Choi, Jin-Yeong;Shin, Pyeong-Su;Lee, Hyung-Ik;Lee, Min-Gyeong;Park, Jong-Kyoo;Park, Joung-Man
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.232-238
    • /
    • 2015
  • As a new method to predict the degree of dispersion in carbon nanocomposites, the electrical resistance (ER) method has been evaluated. After CNT epoxy resin was dropped on CF tow, the change in electrical resistance of carbon fiber tow was measured to evaluate dispersion condition in CNT epoxy resin. Good dispersion of CNTs in carbon nanocomposite exhibited low change in ER due to wetted resin penetrated on CF tow. However, because CNT network was formed among CFs, non-uniform dispersion occurred due to nanoparticle filtering effect by CF tow. The change in ER for poor dispersion exhibited large ER signal change. The change in ER was used for the dispersion evaluation of CNT epoxy resin. Correlation between interlaminar shear strength (ILSS) and dispersion condition by ER method was established. Good CNT dispersion in nanocomposites led to good interfacial properties of fiberreinforced nanocomposites.

Abnormal Detection in 3D-NAND Dielectrics Deposition Equipment Using Photo Diagnostic Sensor

  • Kang, Dae Won;Baek, Jae Keun;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.74-84
    • /
    • 2022
  • As the semiconductor industry develops, the difficulty of newly required process technology becomes difficult, and the importance of production yield and product reliability increases. As an effort to minimize yield loss in the manufacturing process, interests in the process defect process for facility diagnosis and defect identification are continuously increasing. This research observed the plasma condition changes in the multi oxide/nitride layer deposition (MOLD) process, which is one of the 3D-NAND manufacturing processes through optical emission spectroscopy (OES) and monitored the result of whether the change in plasma characteristics generated in repeated deposition of oxide film and nitride film could directly affect the film. Based on these results, it was confirmed that if a change over a certain period occurs, a change in the plasma characteristics was detected. The change may affect the quality of oxide film, such as the film thickness as well as the interfacial surface roughness when the oxide and nitride thin film deposited by plasma enhenced chemical vapor deposition (PECVD) method.