DOI QR코드

DOI QR Code

Development of Multiscale Simulation Technique for Multiphase Fluid System

다상 유체 시스템의 다중 스케일 시뮬레이션 기법에 관한 연구

  • Han, Min-Sub (School of Mechanical System Engineering, Univ. of Incheon)
  • 한민섭 (인천대학교 기계시스템공학부)
  • Received : 2009.08.17
  • Accepted : 2010.05.11
  • Published : 2010.06.01

Abstract

A multiscale particle simulation technique that can be applied to a multiphase fluid system has been developed. In the boundary region where the macroscopic- and microscopic-scale models overlap each other, three distinctive features are introduced in the simulation. First, a wall is set up between the gas and liquid phases to separate them and match the phases respectively to the macroscopic conditions stably. Secondly, the interfacial profile is obtained near the matching region and the wall translates and rotates to accommodate the change in the liquid-vapor interfacial position in the molecular model. The contact angle thus obtained can be sent to the macroscopic model. Finally, a state of mass and temperature in the region is maintained by inserting and deleting the particles. Good matching results are observed in the cases of the complete and partial wetting fluid systems.

다상 유체 시스템에 적용할 수 있는 다중스케일 입자 시뮬레이션 기법을 개발하였다. 거시 모델과 미시모델이 만나는 경계영역에서 세가지로 구별되는 기능을 수행하도록 하였다. 먼저, 기상과 액상을 분리하여 연결하기 위해 벽을 설정하였다. 또 경계영역을 근처에서 경계의 위치를 측정하고 이것에 벽의 각도와 위치가 연동하여 접촉각 값을 미시모델에서 거시모델로 전달하게 하였다. 마지막으로, 입자의 삽입과 제거를 통해 경계영역의 질량과 온도를 거시적 조건에 맞추도록 하였다. 이 알고리즘들을 적용한 완전습윤과 부분습윤시스템들은 좋은 결합 결과를 보였다.

Keywords

References

  1. Dhir, V.K., 1998, "Boiling Heat Transfer," Annual Review of Fluid Mechanics, Vol. 30, pp. 365-401. https://doi.org/10.1146/annurev.fluid.30.1.365
  2. Govor, L.V., Reiter, G., Parisi, J. and Bauer, G.H., 2004, "Self-Assembled Nanoparticle Deposits Formed at the Contact Line of Evaporating Micrometer-Size Droplets," Physical Review E, Vol. 69, p. 061609. https://doi.org/10.1103/PhysRevE.69.061609
  3. Koumoutsakos, P., 2005, "Multiscale Flow Simulations Using Particles," Annual Review of Fluid Mechanics, pp. 457-487.
  4. Ayton, G.S., Noid, W.G. and Voth, G.A., 2004, "Multiscale Modeling of Biomolecular Systems: in Serial and in Parallel," Curr. Op. Struc. Bio., Vol. 17, pp. 192-198.
  5. Flekkoy, E.G., Delgado-Buscalioni, R. and Coveney, P.V., 2005, "Flux Boundary Conditions in Particle Simulations," Phys. Rev. E., Vol. 72, pp. 026703. https://doi.org/10.1103/PhysRevE.72.026703
  6. Allen, M.P. and Tildesley, D.J., 1987, Computer Simulation of Liquids, Oxford. 494.
  7. Leach, A.R., 2001, Molecular Modelling: Principles and Applications, Pearson Education Limited, England.
  8. Yi, P., Poulikakos, D., Walther, J. and Yadigaroglu, G., 2002, "Molecular Dynamics Simulation of Vaporization of an Ultra-Thin Liquid Argon Layer on a Surface," Int. J. Heat Mass Transfer, Vol. 45, pp. 2087-2100. https://doi.org/10.1016/S0017-9310(01)00310-6
  9. Pozrikidis, C., 1997, Introduction to Computational and Theoretical Fluid Dynamics, Oxford University Press.