• Title/Summary/Keyword: intensity attenuation

Search Result 124, Processing Time 0.03 seconds

Spectral Computed Tomography: Fundamental Principles and Recent Developments

  • Aaron So;Savvas Nicolaou
    • Korean Journal of Radiology
    • /
    • v.22 no.1
    • /
    • pp.86-96
    • /
    • 2021
  • CT is a diagnostic tool with many clinical applications. The CT voxel intensity is related to the magnitude of X-ray attenuation, which is not unique to a given material. Substances with different chemical compositions can be represented by similar voxel intensities, making the classification of different tissue types challenging. Compared to the conventional single-energy CT, spectral CT is an emerging technology offering superior material differentiation, which is achieved using the energy dependence of X-ray attenuation in any material. A specific form of spectral CT is dual-energy imaging, in which an additional X-ray attenuation measurement is obtained at a second X-ray energy. Dual-energy CT has been implemented in clinical settings with great success. This paper reviews the theoretical basis and practical implementation of spectral/dual-energy CT.

Simple Empirical Attenuation Relationship for Potential Nuclear Power Plant Sites (원자력발전소의 단순화 된 실증적 지진감쇄 관계)

  • Tanwa, Kankang;Eric, Yee
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.9
    • /
    • pp.43-49
    • /
    • 2018
  • Seismic hazard assessments are performed on a variety of infrastructure projects. One component of a seismic hazard assessment is the attenuation relationship. Several attenuation relationships have been developed over the decades to predict peak ground acceleration under a variety of site conditions. For example, many attenuation relationships were designed to estimate peak ground acceleration, as well as other intensity measures, under a variety of soil conditions, mostly using the average shear wave velocity for the upper 30 m of earth material as a classification scheme. However, certain types of infrastructure, such as tunnels and nuclear power plants, are typically founded on and in bedrock. Using data from Japan, we developed a simple correlation to estimate peak ground acceleration for rock sites and compare the results from another popular attenuation relationship. Results indicate the popular attenuation relationship to be less than the proposed model for distances less than 200 km.

Analysis of Intensity Attenuation Characteristics Using Physics-based Earthquake Ground-motion Simulation with Site Effect in the Southern Korean Peninsula (한반도 남부에서 부지효과를 고려한 물리적 지진동 모델링 기반 진도 감쇠 특성 분석 연구)

  • An, So Hyeon;Kyung, Jai Bok;Song, Seok Goo;Cho, Hyung-Ik
    • Journal of the Korean earth science society
    • /
    • v.41 no.3
    • /
    • pp.238-247
    • /
    • 2020
  • This study simulated strong ground motion waveforms in the southern Korean Peninsula, based on the physical earthquake modeling of the Southern California Earthquake Center (SCEC) BroadBand Platform (BBP). Characteristics of intensity attenuation were investigated for M 6.0-7.0 events, incorporating the site effects. The SCEC BBP is software generates broadband (0-10 Hz) ground-motion waveforms for earthquake scenarios. Among five available modeling methods in the v16.5 platform, we used the Song Model. Approximately 50 earthquake scenarios each were simulated for M 6.0, 6.5, and 7.0 events. Representative metrics such as peak ground acceleration (PGA) and peak ground velocity (PGV) were obtained from the synthetic waveforms that were simulated before and after the consideration of site effects (VS30). They were then empirically converted to distribution of instrumental intensity. The intensity that considers the site effects is amplified at low rather than high VS30 zones.

Analysis of C/N Variation of Ku Band Satellite Beacon Receiver According to Rain Attenuation (강우 감쇠에 따른 Ku 대역 위성 비콘 수신기 C/N 변화 해석)

  • Park, Dae-Kil;Lee, Kyung-Soon;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.415-419
    • /
    • 2018
  • This paper predicts and measures the C/N ratio of a beacon signal transmitted from geostationary orbit satellite KorSat 5A ($113^{\circ}E$) at a ground station located in Kimpo. Based on the ground stations, we compared the rain attenuation of the zone K of ITU-R and the rain attenuation which analyzed the domestic weather information. In ITU-R, the Korean rainfall characteristics are classified into zone K, but forecasting the rainfall intensity and attenuation of three adjacent cities based on the cumulative rainfall data per minute from 2013 to 2017. The calculation of rainfall path and attenuation is based on ITU-R recommendations. The change of the C/N according to the rainfall amount was confirmed through the 2 week satellite beacon signal C/N measurement. The predicted critical C/N was decreased to 12 dB at $A_{0.3}$. During the experiment, it was confirmed that it decreased up to 8 dB according to the concentrated rainfall.

Signal Attenuation in Satellite-Land Mobile Communication (통신 위성과 지상 차량간의 통신에 있어서 신호감쇠)

  • Hong, Ui-Seok;Oh, Ell-Duck
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.7
    • /
    • pp.21-29
    • /
    • 1989
  • Using Fresnel diffraction theory a formula is drived for signal intensity variation caused by finite strip obstacles. Signal intensity according to parameter variation of the obstacle is theoretically calculated by a computer and compared with experimental results. For the experiment, an acryl board 3 mm thick was used on which a special material was painted to prevent some reflections and transmissions of the incident wave. 10-element Yagi antennas were used for transmitting and receiving antenna and the frequency was 820 MHz. Finally a tree model was made as a combination of many different finite strip obstacles. Signal attenuation calculated from numerical analysis agree reasonably with experimental data.

  • PDF

Assessment of Attenuation Correction Algorithms With a $^{137}$Cs Point Source (Cs-137 점선원을 이용한 감쇠보정기법들에 대한 평가)

  • Bong, Jung-Kyun;Kim, Hee-Joung;Park, Hae-Jung;Kwon, Yun-Youn;Son, Hye-Kyoung;Yun, Mi-Jin;Lee, Jong-Doo;Jung, Hae-Jo
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.96-99
    • /
    • 2004
  • The objective of this study is to assess attenuation correction algorithms utilized in a multipurpose whole-body GSO PET scanner. Four different types of phantoms were tested using different types of attenuation correction techniques. FOV (Field of View) of 256mm was used for brain PET imaging. For compensating attenuation, transmission data of a $^{137}$Cs point source were acquired after the F-18 emission source was infused to the phantoms. Scatter correction were peformed. Reconstructed images of the phantoms were assessed. In addition, reconstructed images of a normal subject were compared and assessed by nuclear medicine physicians. As a result, decreased intensity at the central portion of the attenuation map with cylindrical phantom was noticed during use of the measured attenuation correction. On the other hand, segmentation or remapping attenuation correction provided uniform phantom image. the images reconstructed from the clinical brain data explained the attenuation of a skull, at though reconstructed images of the phantoms couldn't explain it. in conclusion, the complicated and improved attenuation correction methods were required to obtain the better accuracy of the quantitative brain PET images. Our study will be useful in improving quantitative brain PET imaging modalities with attenuation correction of $^{137}$Cs transmission source.

  • PDF

Pulsed Ferrite Magnetic Field Generator for Through-the-earth Communication Systems for Disaster Situation in Mines

  • Bae, Seok;Hong, Yang-Ki;Lee, Jaejin;Park, Jihoon;Jalli, Jeevan;Abo, Gavin S.;Kwon, Hyuck M.;Jayasooriya, Chandana K.K.
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.43-49
    • /
    • 2013
  • A pulsed ferrite magnetic field generator (FMFG) was designed for the use in the 1000 m long through-the-earth (TTE) communication system for mining disaster situations. To miniaturize the TTE system, a ferrite core having 10,000 of permeability was used for the FMFG. Attenuation of the magnetic field intensity from the FMFG (200-turn and 0.18 m diameter) was calculated to be 89.95 dB at 1000 m depth soil having 0.1 S/m of conductivity. This attenuation was lower than 151.13 dB attenuation of 1 kHz electromagnetic wave at the same conditions. Therefore, the magnetic-field was found to be desirable as a signal carrier source for TTE communications as compared to the electromagnetic wave. The designed FMFG generates the magnetic field intensity of $1{\times}10^{-10}$ Tesla at 1000 m depth. This magnetic field is detectable by compact magnetic sensors such as flux gate or magnetic tunneling junction sensor. Therefore, the miniature FMFG TTE communication system can replace the conventional electromagnetic wave carrier type TTE system and allow reliable signal transmission between rescuer and trapped miners.

Subcarrier Intensity Modulation-Spatial Modulation for Optical Wireless Communications (광 무선통신을 위한 SIM-SM 변조)

  • Cheng, Yan;Hwang, Seung-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.12
    • /
    • pp.1086-1093
    • /
    • 2013
  • In this paper, we propose a novel modulation that combines the spatial modulation (SM) with the subcarrier intensity-modulation (SIM) for optical wireless communications. The performance of SIM-SM scheme is compared to a conventional SIM by computer simulation. For the spectral efficiency (SE) of 2bits/s/Hz, the performance gain about 2dB is achieved. As the SE increases to 3bit or 4bits/s/Hz, the Eb/N0 gain becomes about 5dB. It is shown the attenuation for the SIM is more serious than the SIM-SM according to increasing the number of the subcarriers.

A Proposal for Optical Diagnostics Through the Enhancement of Diffraction Patterns Using Thin-film Interference Filters

  • Stefanita Carmen Gabriela;Shao Yun Feng
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.6
    • /
    • pp.428-434
    • /
    • 2004
  • Coarse clumping of solid materials within diseased biological cells can have a marked influence on the light scattering pattern. Perturbations in refractive index lead to distinct varia­tions in the cytometric signature, especially apparent over wide scattering angles. The large dynamic range of scattering intensities restricts collection of data to narrow angular intervals be­lieved to have the highest potential for medical diagnosis. We propose the use of an interfer­ence filter to reduce the dynamic range. Selective attenuation of scattering intensity levels is expected to allow simultaneous data collection over a wide angular interval. The calculated angu­lar transmittance of a commercial shortwave-pass filter of cut-off wavelength 580 nm indicates significant attenuation of scattering peaks below ${\~}\;10^{circ}$, and reasonable peak equalization at higher angles. For the three-dimensional calculation of laser light scattered by cells we use a spectral method code that models cells as spatially varying dielectrics, stationary in time. How­ever, we perform preliminary experimental testing with the interference filter on polystyrene microspheres instead of biological cells. A microfluidic toolkit is used for the manipulation of the microspheres. The paper intends to illustrate the principle of a light scattering detection system incorporating an interference filter for selective attenuation of scattering peaks.

Restoration of underwater images using depth and transmission map estimation, with attenuation priors

  • Jarina, Raihan A.;Abas, P.G. Emeroylariffion;De Silva, Liyanage C.
    • Ocean Systems Engineering
    • /
    • v.11 no.4
    • /
    • pp.331-351
    • /
    • 2021
  • Underwater images are very much different from images taken on land, due to the presence of a higher disturbance ratio caused by the presence of water medium between the camera and the target object. These distortions and noises result in unclear details and reduced quality of the output image. An underwater image restoration method is proposed in this paper, which uses blurriness information, background light neutralization information, and red-light intensity to estimate depth. The transmission map is then estimated using the derived depth map, by considering separate attenuation coefficients for direct and backscattered signals. The estimated transmission map and estimated background light are then used to recover the scene radiance. Qualitative and quantitative analysis have been used to compare the performance of the proposed method against other state-of-the-art restoration methods. It has been shown that the proposed method can yield good quality restored underwater images. The proposed method has also been evaluated using different qualitative metrics, and results have shown that method is highly capable of restoring underwater images with different conditions. The results are significant and show the applicability of the proposed method for underwater image restoration work.