A Proposal for Optical Diagnostics Through the Enhancement of Diffraction Patterns Using Thin-film Interference Filters

  • Stefanita Carmen Gabriela (University of Alberta, Department of Electrical and Computer Engineering Edmonton) ;
  • Shao Yun Feng (University of Alberta, Department of Electrical and Computer Engineering Edmonton)
  • Published : 2004.11.01

Abstract

Coarse clumping of solid materials within diseased biological cells can have a marked influence on the light scattering pattern. Perturbations in refractive index lead to distinct varia­tions in the cytometric signature, especially apparent over wide scattering angles. The large dynamic range of scattering intensities restricts collection of data to narrow angular intervals be­lieved to have the highest potential for medical diagnosis. We propose the use of an interfer­ence filter to reduce the dynamic range. Selective attenuation of scattering intensity levels is expected to allow simultaneous data collection over a wide angular interval. The calculated angu­lar transmittance of a commercial shortwave-pass filter of cut-off wavelength 580 nm indicates significant attenuation of scattering peaks below ${\~}\;10^{circ}$, and reasonable peak equalization at higher angles. For the three-dimensional calculation of laser light scattered by cells we use a spectral method code that models cells as spatially varying dielectrics, stationary in time. How­ever, we perform preliminary experimental testing with the interference filter on polystyrene microspheres instead of biological cells. A microfluidic toolkit is used for the manipulation of the microspheres. The paper intends to illustrate the principle of a light scattering detection system incorporating an interference filter for selective attenuation of scattering peaks.

Keywords

References

  1. Vo-Dinh, T., B. M. Cullum, and D. L. Stokes (2001) Nanosensors and biochips: Frontiers in biomolecular diagnostics. Sens. Actuat. B. Chem. 74: 2-11 https://doi.org/10.1016/S0925-4005(00)00705-X
  2. Mourant, J. R., J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson (1998) Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. Appl. Opt. 37: 3586-3593 https://doi.org/10.1364/AO.37.003586
  3. Backman, V, V Gopal, M. Kalashnikov, K. Badizadegan, R. Gunar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. Feld (2001) Measuring Cellu-lar structure at submicrometer scale with light scattering spectroscopy. IEEE J. Select. Top. Quant. Electron. 7:887-893 https://doi.org/10.1109/2944.983289
  4. Drezek, R., A. Dunn, and R. Richards-Kortum (1999) Light scattering from cells: Finite-difference time-domain simulations and goniometric measurements. Appl. Opt. 38: 3651-3661 https://doi.org/10.1364/AO.38.003651
  5. Drezek, R., A. Dunn, and R. Richards-Kortum (2000) A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges. Opt. Express 6: 147-157 https://doi.org/10.1364/OE.6.000147
  6. Schrum, D., C. Culbertson, S. Jacobson, and M. Ramsey (1999) Microchip-flow cytometry using electrokinetic fo-cusing. Anal. Chem. 71: 4173-4177 https://doi.org/10.1021/ac990372u
  7. Altendorf, E. H. and P. Yager (1998) Silcon microchannel optical flow cytometer. US Patent 5,726,751
  8. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang (1988) Spectral Methods in Fluid Dynamics. Springer-Verlag, Berlin, Germany
  9. Shao, Y., A. V. Maxim'ov, I. G. Ourdev, W. Rozmus, and C. E. Capjack (2001) Spectral method simulations of light scattering by biological cells. IEEE J. Quant. Electron. 37:617-625 https://doi.org/10.1109/3.918573
  10. Shao, Y. (2002) Modeling of Light Propagation in Biologi-cal Tissues. Ph.D. Thesis. University of Alberta, Edmonton Alberta, Canada
  11. Amin, M. R., C. E. Capjack, P. Frycz, W. Rozmus, and V. T. Tikhonchuk (1993) Two-dimensional simulations of stimulated Brillouin scattering in laser produced plasma. Phys. Rev. Lett. 71:81-84 https://doi.org/10.1103/PhysRevLett.71.81
  12. Crabtree, H. J., E. C. S. Cheong, D. A. Tilroe, and C. J. Backhouse (2001) Microchip injection and separation anomalies due to pressure effects. Anal. Chem. 73: 4079-4086 https://doi.org/10.1021/ac010217r
  13. Drezek, R., A. Dunn, and R. Richards-Kortum (1996) Three-dimensional computation of light scattering from cells. IEEE J. Select. Top. Quant. Electron. 2: 898-905 https://doi.org/10.1109/2944.577313
  14. Mie, G. (1908) Considerations on the optics of turbid media, especially colloidal metal solutions. Ann. Phys. 25:377-442
  15. Kohl, M.and M. Cope (1994) Influence of glucose Con-centration on light scattering in tissue. Opt. Lett. 17: 2170-2172
  16. Dunn (1997) Light Scattering Properties of Cells. Ph.D. Thesis. University of Texas at Austin, Austin, Texas, USA
  17. Stefanita, C.-G., Y. Shao, W. Rozmus, C. E. Capjack, and C. J. Backhouse, Filtering scattered light in microchip-based cell diagnostics IEEE Trans. Instr. Meas. (in press)
  18. Interference filter manufacturers' website or product catalogues: e.g. Coherent Inc., Andover Corporation, Melles Griot, Oriel etc
  19. Azzam, R. M. A. and N. M. Bashara (1977) Ellipsometry and Polarized Light. North Holland
  20. Starlight Xpress (2002), available online: http://www.starlightccd.com
  21. Roper Scientific (2002), available online: http://www. roperscientific. com/library_enc_signal.shtml
  22. Quarteroni, A., R. Sacco, and F. Saleri (2000) Numerical Mathematics (Texts in Appl. Math., Vol. 37). Springer Verlag, New York, USA