• Title/Summary/Keyword: intelligent walking

Search Result 181, Processing Time 0.022 seconds

Study on the Transformable Quadruped Robot with Docking Module (변형과 결합 가능한 4족 로봇에 대한 연구)

  • Kim, Young-Min;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.236-241
    • /
    • 2015
  • This paper presents a study on transformable multiple quadruped robots by docking between robots and waist joints. This robot is able to go on a variety of angles because of mecanum wheels. It is also a hybrid design which allows robot use legs to overcome obstacles on complex terrains and wheels to move on flat ground. The robot is applied kinematics of mecanum wheels and walking, and its walking is based on specific patterns. Docking module is located in front and backside of robot, docking algorithm is suggested and fulfilled for docking between 2 robots. A waist joint is at the center of robot body for transformation and after docking and transformation, robot can activate new functions that carry something.

Dynamic Walking for a Biped Robot Using Fuzzy Model (퍼지 모델을 이용한 이족 로봇의 동적 보행 설계)

  • Jang, Kwon-Kyu;Joo, Young-Hoon;Park, Hyun-Bin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.481-486
    • /
    • 2004
  • The biped robot has the better mobility than the conventional wheeled robot. Since a biped robot tends to tip over easily, it is necessary to take stability into account when determining a walking pattern. To ensure the dynamic stability of the biped robot, we have to adapt the ground conditions with a foot motion and maintain motion, and ensure its stability through the kinematics and dynamics analysis. But its mathematic model is not too easy. In this paper, in order to ensure the dynamic stability of a biped robot, we design the fuzzy model and confirm the realization possibility of the proposed method through some simulations.

Generation of Walking Trajectory of Humanoid Robot using CPG (CPG를 이용한 휴머노이드 로봇 Nao의 보행궤적 생성)

  • Lee, Jaemin;Seo, Kisung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.360-365
    • /
    • 2013
  • The paper introduces dynamic generation technique of foot trajectories using CPG(Central Pattern Generator). In this approach, the generated foot trajectories can be changeable according to variable outputs of CPG in various environments, because they are given as mapping functions of the output signals of the CPG oscillators. It enables to provide an adaptable foot trajectory for environmental change. To demonstrate the effectiveness of the proposed approach, experiments on humanoid robot Nao is executed in the Webot simulation. The performance and motion features of CPG based approach is analyzed.

Locomotion Control of 4 Legged Robot Using HyperNEAT (HyperNEAT를 이용한 4족 보행 로봇의 이동 제어)

  • Jang, Jae-Young;Hyun, Soo-Hwan;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.132-137
    • /
    • 2011
  • The walking mobility with stability of 4 legged robots is the distinguished skills for many application areas. Planning gaits of efficient walking for quadruped robots is an important and challenging task. Especially, autonomous generation of locomotion is required to manage various robot models and environments. In this paper, we propose an adaptive locomotion control of 4 legged robot for irregular terrain using HyperNEAT. Generated locomotion is executed and analysed using ODE based Webots simulation for the 4 legged robot which is built by Bioloid.

Development of an Intelligent Ankle Assistive Robot (지능형 발목 근력 보조 로봇의 개발)

  • Jeong, Woo-Chul;Kim, Chang-Soon;Park, Jin-Yong;Hyun, Jung-Guen;Kim, Jung-Yup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.538-546
    • /
    • 2015
  • This paper describes an intelligent ankle assistive robot which provides assistive power to reduce ankle torque based on an analysis of ankle motion and muscle patterns during walking on level and sloped floors. The developed robot can assist ankle muscle power by driving an electric geared motor at the exact timing through the use of an accelerometer that detects gait phase and period, and a potentiometer to measure floor slope angle. A simple muscle assistive link mechanism is proposed to convert the motor torque into the foot assistive force. In particular, this mechanism doesn't restrain the wearer's ankle joint; hence, there is no danger of injury if the motor malfunctions. During walking, the link mechanism pushes down the top of the foot to assist the ankle torque, and it can also lift the foot by inversely driving the linkage, so this robot is useful for foot drop patients. The developed robot and control algorithm are experimentally verified through walking experiments and EMG (Electromyography) measurements.

Factor Analysis Influencing Pedestrian Volumes Based on Structural Equation Models (구조방정식(S.E.M.)을 이용한 보행량 영향요인분석)

  • Kim, Tae-hyun;Oh, Ju-taek;Lee, Kyu-hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.3
    • /
    • pp.12-22
    • /
    • 2016
  • Walking behaviors are one of the most basic transport modes in daily life. As a result, the efforts and concerns on pedestrians are consistently increased. This study tried to reveal significant factors for pedestrian volumes through structural equation models and compare the impacts of the whole time of day, off-peak time, peak time on the pedestrian volumes. The results of the analysis show that commercial business factors, accessibility factors, walking environment factors are the most significant factors that increase pedestrian volumes. Whereas, housing factors do not contribute to increase the pedestrian volumes. In the non-peak time, the weight of commercial business factors is higher than the whole time of day, while the weight housing factors, accessibility factors, walking environment factors are lower. In the peak time, however, the weight of commercial business factors decreases rather than the whole time of day, while the weight of the other factors increase.

A Study on Task Planning and Design of Modular Quadruped Robot with Docking Capability (결합 가능한 모듈형 4족 로봇의 설계 및 작업 계획에 대한 연구)

  • Sun, Eun-Hey;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.169-175
    • /
    • 2016
  • There are many researches to develop robots that improve its mobility and task planning to adapt in various uneven environments. In this paper, we propose the design method and task planning of quadruped robot which can have top-bottom docking structure. The proposed quadruped robot is designed to adjust leg length using linear actuators and perform top-bottom docking and undocking using octagonal cone shaped docking module. Also, to stable walking and information gathering in the various environments, a geomagnetic sensor, PSD sensor, LRF sensor and camera. We propose an obstacle avoidance method and the topbottom docking algorithm of the two quadruped robots using linear actuator. The robot can overcome obstacles using adjusting leg length and activate the top-bottom docking function. The top-bottom docking robots of two quadruped robot can walk 4 legged walking and 6 legged walking, and use 4 arms or 2 arms the upper. We verified that the docking robots can carry objects using 4 leg of the upper robot.

Development of Pedestrian Signal Timing Models Considering the Characteristics of Land Use and Pedestrians (토지이용 및 보행자 특성을 고려한 보행신호시간 모형 개발에 관한 연구)

  • Hwang, Duk-Soo;Oh, Young-Tae;Lee, Sang-Soo;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.2
    • /
    • pp.26-36
    • /
    • 2008
  • Currently, the pedestrian signal timing model has no consideration on the characteristics of different land use patterns and pedestrian behaviors during pedestrian signal timing calculation. This study intended to propose pedestrian signal timing models that could reflect the inherent characteristics of pedestrian and land use patterns. For this study, three major variables affecting the length of signal timing were identified: walking speed, perception-reaction time, and density-delay time. Then, the representative values of each variable were estimated through the field studies. By combining this information, several pedestrian signal timing models were developed. The data in this paper can be used for future references, and the walking environments for pedestrians could be improved by applying the models suggested in this paper.

  • PDF

Kinematic Analysis of a Legged Walking Robot Based on Four-bar Linkage and Jansen Mechanism (4절 링크 이론과 얀센 메커니즘을 기반으로 한 보행 로봇의 운동학 해석)

  • Kim, Sun-Wook;Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.159-164
    • /
    • 2011
  • In this study, a crab robot is implemented in H/W based on four-bar linkage mechanism and Jansen mechanism, and its kinematics is analysed. A vision camera is attached to the mechanism, which makes the proposed robot a kind of biologically inspired robot for image acquisition. Three ultrasonic sensors are adopted for obstacle avoidance. In addition, the biologically inspired robot can achieve the mission appointed by a programmer outside, based on RF and Blue-tooth communication module. For the design and implementation of a crab robot, it is need to get joint variable, a foot point, and their relation. Thus, the proposed kinematic analysis is very important process for the design and implementation of legged robots.

Gait Generation for Quadruped Robots Using Body Sways (몸체 스웨이를 이용한 4족 로봇의 걸음새 생성)

  • Jung, Hak-Sang;Kim, Guk-Hwa;Choi, Yoon-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.305-311
    • /
    • 2012
  • In this paper, we propose a gait generation method for quadruped robots using the xz-axis sway of the quadruped robot, which minimizes the shake of the quadruped robot and maximizes the stability margin. In the proposed method, the gait is generated based on wave gaits and the stability analysis uses the body tilt information of the quadruped robot according to the leg's height of leg. In addition, to reduce the impact on the body caused by the z-axis sway while walking, the proposed method generates the smooth walking movement trajectory with less impact by using Fourier series. Finally, to verify the applicability and effectiveness of the proposed method, we carry out the computer simulations and the real walking experiments with the implemented quadruped robot.