DOI QR코드

DOI QR Code

Generation of Walking Trajectory of Humanoid Robot using CPG

CPG를 이용한 휴머노이드 로봇 Nao의 보행궤적 생성

  • Lee, Jaemin (Dept. of Electronics Engineering, Seokyeong University) ;
  • Seo, Kisung (Dept. of Electronics Engineering, Seokyeong University)
  • 이재민 (서경대학교 전자공학과) ;
  • 서기성 (서경대학교 전자공학과)
  • Received : 2013.03.31
  • Accepted : 2013.08.05
  • Published : 2013.08.25

Abstract

The paper introduces dynamic generation technique of foot trajectories using CPG(Central Pattern Generator). In this approach, the generated foot trajectories can be changeable according to variable outputs of CPG in various environments, because they are given as mapping functions of the output signals of the CPG oscillators. It enables to provide an adaptable foot trajectory for environmental change. To demonstrate the effectiveness of the proposed approach, experiments on humanoid robot Nao is executed in the Webot simulation. The performance and motion features of CPG based approach is analyzed.

본 연구에서는 발끝 궤적을 미리 설계하지 않고, CPG(Central Pattern Generator)를 이용하여 동적으로 생성할 수 있는 기법을 제안한다. 생성된 발끝 궤적은 CPG 의 진동적인 출력에 따라 가변적인데, 이는 발끝 궤적이 CPG 진동적인 출력 신호의 맵핑 함수로 주어지기 때문이다. 이를 통해 환경에 적응적인 궤적을 생성할 수 있는 토대를 마련할 수 있다. 제안된 기법의 효율성을 검증하기 위해서, Webots 시뮬레이션을 통해 휴머노이드 로봇 Nao에 대한 실험을 수행하고, 성능과 동작 특성을 분석한다.

Keywords

References

  1. M. Vokobratovic, A.A. Frank, D. Juricic, "On the Stability of Biped Locomotion," Biomedical Engineering, IEEE Transactions on , vol. BME-17, no. 1, pp. 25,36, Jan. 1970.
  2. S. Lee and H. Kim, "Reference ZMP Trajectory Generation and Implementation for a Biped Robot via Linear Inverted Dumbbell Model" Journal of the Korean Society of Precision Engineering, Vol. 29, No. 4, pp. 417-425, 2012. https://doi.org/10.7736/KSPE.2012.29.4.417
  3. J. Y. Kim, I. W. Park, and J. H. Oh, "Experimental realization of dynamic walking of biped humanoid robot KHR-2 using ZMP feedback and Inertial measurement," Advanced Robotics, vol. 20, no. 6, pp. 707-736, 2006. https://doi.org/10.1163/156855306777361622
  4. C. Graf, A. Härtl, T. Rofer, T. Laue, "A Robust Closed-Loop Gait for the Standard Platform League Humanoid," Proceedings of the Fourth Workshop on Humanoid Soccer Robots in conjunction with the 2009 IEEE-RAS International Conference on Humanoid Robots, 2009.
  5. K. Matsuoka, "Mechanisms of frequency and pattern control in the neural rhythm generators", Biological Cybernetics, vol. 56, issue 5, pp. 345-353, 1987. https://doi.org/10.1007/BF00319514
  6. A. J. Ijspeert. "Central pattern generators for locomotion control in animals and robots: a review," Neural Networks, 21(4), pp. 642-653, 2008 https://doi.org/10.1016/j.neunet.2008.03.014
  7. T. Matsubara, J. Morimoto, J. Nakanishi, M. Sato, K. Doya, "Learning CPG-based biped locomotion with a policy gradient method," Robotics and Autonomous Systems, vol. 54, no. 6, pp. 911-920, 2006. https://doi.org/10.1016/j.robot.2006.05.012
  8. C. Liu, D. Wang, Q. Chen, "Central Pattern Generator Inspired Control for Adaptive Walking of Biped Robots," Systems, Man, and Cybernetics: Systems, IEEE Transactions on, no. 99, pp. 1-10, 2013
  9. C. P. Santos, V. Matos, "CPG modulation for navigation and omnidirectional quadruped locomotion," Robotics and Autonomous Systems, vol. 60, no. 6, pp. 912-927, 2012. https://doi.org/10.1016/j.robot.2012.01.004
  10. J. Lee, K. Seo, "Generation of Walking Trajectory of Humanoid Robot using CPG," Proceedings of Korean Institute of Intelligent Systems 2013 Spring Conference, vol. 23, no. 1, pp. 123-124, 4 2013
  11. "Forward and Inverse Kinematics for the NAO Humanoid Robot," Technical University of Crete, July 2012

Cited by

  1. Marathon Game and Strategy of Humanoid Robot vol.26, pp.1, 2016, https://doi.org/10.5391/JKIIS.2016.26.1.064
  2. Strategy for Sprint Race of Humanoid Robot vol.26, pp.5, 2016, https://doi.org/10.5391/JKIIS.2016.26.5.390
  3. A Combined CPG Foot Trajectory and GP Joint Compensation Method for Adaptive Humanoid Walking vol.65, pp.9, 2016, https://doi.org/10.5370/KIEE.2016.65.9.1551