• Title/Summary/Keyword: integrals

Search Result 617, Processing Time 0.023 seconds

Use of Coulomb-Yukawa Like Correlated Interaction Potentials of Integer and Noninteger Indices and One-range Addition Theorems for Ψα-ETO in Evaluation of Potential of Electric Field Produced by Molecule

  • Guseinov, I.I.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2617-2620
    • /
    • 2009
  • Using Coulomb-Yukawa like correlated interaction potentials of integer and noninteger indices the series expansion formulae in terms of multicenter overlap integrals of three complete orthonormal sets of ${\psi}^{\alpha}$‒exponential type orbitals and linear combination coefficients of molecular orbitals are established for the potential of electrostatic field produced by the charges of molecule, where $\alpha$ = 1, 0, ‒1, ‒2,${\cdots}$. The formulae obtained can be useful for the study of interaction between atomic--molecular systems containing any number of closed and open shells when the ${\psi}^{\alpha}$‒exponential type basis functions and Coulomb-Yukawa like correlated interaction potentials are used in the Hartree-Fock-Roothaan and explicitly correlated approximations. The final results are valid for the arbitrary values of parameters of correlated interaction potentials and orbitals. As an example of application, the calculations have been performed for the potential energy of interaction between electron and molecule $H_2O$ using combined Hartree-Fock-Roothaan equations suggested by the author.

Anisotropy of the Electrical Conductivity of the Fayalite, Fe2SiO4, Investigated by Spin Dimer Analysis

  • Lee, Kee Hag;Lee, Jeeyoung;Dieckmann, Rudiger
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.629-632
    • /
    • 2013
  • Many properties of inorganic compounds are sensitive to changes in the point-defect concentrations. In minerals, such changes are influenced by temperature, pressure, and chemical impurities. Olivines form an important class of minerals and are magnesium-rich solid solutions consisting of the orthosilicates forsterite $Mg_2SiO_4$ and the fayalite $Fe_2SiO_4$. Orthosilicates have an orthorhombic crystal structure and exhibit anisotropic electronic and ionic transport properties. We examined the anisotropy of the electrical conductivity of $Fe_2SiO_4$ under the assumption that the electronic conduction in $Fe_2SiO_4$ occurs via a small polaron hopping mechanism. The anisotropic electrical conductivity is well explained by the electron transfer integrals obtained from the spin dimer analysis based on tight-binding calculations. The latter analysis is expected to provide insight into the anisotropic electrical conductivities of other magnetic insulators of transition metal oxides.

p-Version Finite Element Analysis of Anisotropic Laminated Plates considering Material-Geometric Nonlinearities (재료-기하비선형을 고려한 이방성 적층평판의 p-Version 유한요소해석)

  • 홍종현;박진환;우광성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.319-326
    • /
    • 2002
  • A p-version finite element model based on degenerate shell element is proposed for the analysis of orthotropic laminated plates. In the nonlinear formulation of the model, the total Lagrangian formulation is adopted with large deflection and moderate rotation being accounted for in the sense of von Karman hypothesis. The material model Is based on the Huber-Mises yield criterion and Prandtl-Reuss flow rule in accordance with the theory of strain hardening yield function, which is generalized for anisotropic materials by introducing the parameters of anisotropy. The model is also based on extension of equivalent-single layer laminate theory(ESL theory) with shear deformation, leading to continuous shear strain at the interface of two layers. The Integrals of Legendre Polynomials we used for shape functions with p-level varying from 1 to 10. Gauss-Lobatto numerical quadrature is used to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed p-version finite element model is demonstrated through several comparative points of view in terms of ultimate load, convergence characteristics, nonlinear effect, and shape of plastic zone

  • PDF

Mode Analysis of Silica Waveguides with Semi Circular Cross Section by using the Method of Harmonic Expansion in Finite Area (유한영역에서 조화함수 전개법을 이용한 반달꼴 단면 이산화규소 광도파로의 모우드 분석)

  • 김진승
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.90-100
    • /
    • 1993
  • A computer routine for personal computer(PC/AT class) is developed to analysize the mode characteristics of silica based optical waveguides whose cross sections are of semi circular and other typical shapes. The basic algorithm used in the routine is to convert the wave equation into a matrix equation by expanding the wave function in terms of simple harmonic functions. The matrix elements are a set of overlap integrals of sinusoidal funtions with appropriate weight given by the distribution of refractive index over the waveguide cross section. The eigenvectors and eigenvalues of the matrix is then computed via diagonalization. We explain some practical problems that arises when implementing the algorithm into the routine. By using this routine we analyze the mode characteristics of silica based optical waveguides of semi circular and some other typical cross sections.

  • PDF

Free Vibration of EllllIipticall and Circular Plates (타원형 및 원형 평판의 자유 진동)

  • 김찬수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1485-1492
    • /
    • 1992
  • While the vibration of circular plates were considered by many researchers, rather less attention is given to elliptical plates. In the present paper, the Rayleigh-Ritz mothod is used to obtain an eigenvalue equation for the free flexural vibration of thin elliptical plates having the classical free, simply suported or clmped boundary condition. Circular plates are included as a special case of the elliptical plates. Products of simple polynomials are used as the admissible functions and a recurrence relationship facilitates the evaluation of the necessary integrals. The analysis is developed for rectilinear orthotropic plates but the numerical results are given for isotropic plates with various aspect ratios.

CERTAIN CLASSES OF INFINITE SERIES DEDUCIBLE FROM MELLIN-BARNES TYPE OF CONTOUR INTEGRALS

  • Choi, Junesang;Agarwal, Praveen
    • The Pure and Applied Mathematics
    • /
    • v.20 no.4
    • /
    • pp.233-242
    • /
    • 2013
  • Certain interesting single (or double) infinite series associated with hypergeometric functions have been expressed in terms of Psi (or Digamma) function ${\psi}(z)$, for example, see Nishimoto and Srivastava [8], Srivastava and Nishimoto [13], Saxena [10], and Chen and Srivastava [5], and so on. In this sequel, with a view to unifying and extending those earlier results, we first establish two relations which some double infinite series involving hypergeometric functions are expressed in a single infinite series involving ${\psi}(z)$. With the help of those series relations we derived, we next present two functional relations which some double infinite series involving $\bar{H}$-functions, which are defined by a generalized Mellin-Barnes type of contour integral, are expressed in a single infinite series involving ${\psi}(z)$. The results obtained here are of general character and only two of their special cases, among numerous ones, are pointed out to reduce to some known results.

Curved beam through matrices associated with support conditions

  • Gimena, Faustino N.;Gonzaga, Pedro;Valdenebro, Jose V.;Goni, Mikel;Reyes-Rubiano, Lorena S.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.395-412
    • /
    • 2020
  • In this article, the values of internal force and deformation of a curved beam under any action with the firm or elastic supports are determined by using structural matrices. The article presents the general differential formulation of a curved beam in global coordinates, which is solved in an orderly manner using simple integrals, thus obtaining the transfer matrix expression. The matrix expression of rigidity is obtained through reordering operations on the transfer notation. The support conditions, firm or elastic, provide twelve equations. The objective of this article is the construction of the algebraic system of order twenty-four, twelve transfer equations and twelve support equations, which relates the values of internal force and deformation associated with the two ends of the directrix of the curved beam. This final algebraic system, expressed in matrix form, is divided into two subsystems: twelve algebraic equations of internal force and twelve algebraic equations of deformation. The internal force and deformation values for any point in the curved beam directrix are determined from these values in the initial position. The five examples presented show how to apply the matrix procedures developed in this article, whether they are curved beams with the firm or elastic support.

Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory

  • Hadji, Lazreg;Avcar, Mehmet
    • Advances in nano research
    • /
    • v.10 no.3
    • /
    • pp.281-293
    • /
    • 2021
  • This paper presents a new nonlocal Hyperbolic Shear Deformation Beam Theory (HSDBT) for the free vibration of porous Functionally Graded (FG) nanobeams. A new displacement field containing integrals is proposed which involves only three variables. The present model incorporates the length scale parameter (nonlocal parameter) which can capture the small scale effect and its account for shear deformation by a hyperbolic variation of all displacements through the thickness without using the shear correction factor. It has been observed that during the manufacture of Functionally Graded Materials (FGMs), micro-voids and porosities can occur inside the material. Thus, in this work, the investigation of the free vibration analysis of FG beams taking into account the influence of these imperfections is established. Four different porosity types are considered for FG nanobeam. Material characteristics of the FG beam are supposed to vary continuously within thickness direction according to a power-law scheme which is modified to approximate material characteristics for considering the influence of porosities. Based on the nonlocal differential constitutive relations of Eringen, the equations of motion of the nanobeam are derived using Hamilton's principle. The effects of nonlocal parameter, aspect ratio, and the porosity types on the dynamic responses of the nanobeam are discussed.

A cross-entropy algorithm based on Quasi-Monte Carlo estimation and its application in hull form optimization

  • Liu, Xin;Zhang, Heng;Liu, Qiang;Dong, Suzhen;Xiao, Changshi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.115-125
    • /
    • 2021
  • Simulation-based hull form optimization is a typical HEB (high-dimensional, expensive computationally, black-box) problem. Conventional optimization algorithms easily fall into the "curse of dimensionality" when dealing with HEB problems. A recently proposed Cross-Entropy (CE) optimization algorithm is an advanced stochastic optimization algorithm based on a probability model, which has the potential to deal with high-dimensional optimization problems. Currently, the CE algorithm is still in the theoretical research stage and rarely applied to actual engineering optimization. One reason is that the Monte Carlo (MC) method is used to estimate the high-dimensional integrals in parameter update, leading to a large sample size. This paper proposes an improved CE algorithm based on quasi-Monte Carlo (QMC) estimation using high-dimensional truncated Sobol subsequence, referred to as the QMC-CE algorithm. The optimization performance of the proposed algorithm is better than that of the original CE algorithm. With a set of identical control parameters, the tests on six standard test functions and a hull form optimization problem show that the proposed algorithm not only has faster convergence but can also apply to complex simulation optimization problems.

Determination Method of Ramberg-Osgood Constants for Leak Before Break Evaluation (파단전 누설 평가를 위한 Ramberg - Osgood 상수 결정법)

  • Bae, Kyung Dong;Ryu, Ho Wan;Kim, Yun Jae;Kim, Jin Weon;Kim, Jong Sung;Oh, Young Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.645-652
    • /
    • 2015
  • In this study, a method for determining Ramberg-Osgood constants for leak-before-break evaluation was investigated. The Ramberg-Osgood constants were calculated for SA312, TP316, and SA-508 Gr.1a in an operating temperature of $316^{\circ}C$. Incremental plasticity, using stress-strain data obtained from experiment, and deformation plasticity, using the Ramberg-Osgood constants, were considered in a finite element analysis. Using incremental plasticity and deformation plasticity, J-integrals and crack opening displacement values were calculated and compared. By comparing the results of incremental plasticity and deformation plasticity, a suitable method for determining Ramberg-Osgood constants for leak-before-break evaluation was confirmed.