DOI QR코드

DOI QR Code

Anisotropy of the Electrical Conductivity of the Fayalite, Fe2SiO4, Investigated by Spin Dimer Analysis

  • Lee, Kee Hag (Department of Materials Science and Engineering, Bard Hall, Cornell University) ;
  • Lee, Jeeyoung (Department of Chemistry, Nanoscale Science and Technology Institute, Wonkwang University) ;
  • Dieckmann, Rudiger (Department of Materials Science and Engineering, Bard Hall, Cornell University)
  • Received : 2012.12.11
  • Accepted : 2013.01.04
  • Published : 2013.02.20

Abstract

Many properties of inorganic compounds are sensitive to changes in the point-defect concentrations. In minerals, such changes are influenced by temperature, pressure, and chemical impurities. Olivines form an important class of minerals and are magnesium-rich solid solutions consisting of the orthosilicates forsterite $Mg_2SiO_4$ and the fayalite $Fe_2SiO_4$. Orthosilicates have an orthorhombic crystal structure and exhibit anisotropic electronic and ionic transport properties. We examined the anisotropy of the electrical conductivity of $Fe_2SiO_4$ under the assumption that the electronic conduction in $Fe_2SiO_4$ occurs via a small polaron hopping mechanism. The anisotropic electrical conductivity is well explained by the electron transfer integrals obtained from the spin dimer analysis based on tight-binding calculations. The latter analysis is expected to provide insight into the anisotropic electrical conductivities of other magnetic insulators of transition metal oxides.

Keywords

References

  1. Brown, G. E., Jr. Olivines and Silicate Spinels; In Reviews in Mineralogy, Ribbe, P. H., Ed.; Mineralogical Soc. Amer.: Washington, D. C., 1980; Vol. 5, Chap. 11.
  2. Smyth, J. R. Am. Mineral. 1975, 60, 1092.
  3. Lottermoser, W.; Steiner, K.; Grodzicki, M.; Jiang, K.; Scharfetter, G.; Bats, J. W.; Redhammer, G.; Treutmam, W.; Hosoya, S.; Amthauer, G. Phys. Chem. Minerals 2002, 29, 112. https://doi.org/10.1007/s00269-001-0226-2
  4. Mao, H. K.; Bell, P. M. Science 1972, 176, 403. https://doi.org/10.1126/science.176.4033.403
  5. Williams, Q.; Knittle, E.; Reichlin, R.; Martin, S.; Jeanloz, R. J. Geophys. Res. B 1990, 95(13), 21549. https://doi.org/10.1029/JB095iB13p21549
  6. Fuess, H.; Ballet, O.; Lottermoser, W. Structural and Magnetic Phase Transitions in Minerals. In Advances in Physical Geochemistry, Ghose, S., Coey, J. M. D., Salje, E., Eds.; Springer- Verlag: Berlin, 1988; Vol. 7, p 185.
  7. Tsai, T.-L.; Dieckmann, R. Materials Science Forum 1997, 239, 399
  8. Schock, R. N.; Duba, A. G.; Shankland, T. J. J. Geophys. Res. 1989, 94, 5829. https://doi.org/10.1029/JB094iB05p05829
  9. Sockel, H. G. Defect Structure and Electrical Conductivity of Crystalline Ferrous Silicate; In Defects and Transport in Oxide; Seltzer, M. S.; Jaffee, R. I., Eds.; Prenum Press: New York, 1974; pp 341-356.
  10. Schock, R. N.; Duba, A. C. In Point Defects and the Mechanisms of Electrical Conduction in Olivine; Shock, R. N., Ed.; Amer. Geophys. Union: Washington, D. C., 1985; pp 88-96.
  11. Hirsch, L. M.; Shankland, T. J.; Duba, A. G. Geophys. J. Int. 1993, 114, 36. https://doi.org/10.1111/j.1365-246X.1993.tb01464.x
  12. Constable, S.; Roberts, J. J. Phys. Chem. Minerals 1997, 24, 319. https://doi.org/10.1007/s002690050044
  13. Brodholt, J. P.; Voèadlo, L. MRS Bulletin 2006, 31, 675. https://doi.org/10.1557/mrs2006.176
  14. Hafner, J.; Wolverton, C.; Ceder, G. MRS Bulletin 2006, 31, 659. https://doi.org/10.1557/mrs2006.174
  15. Cococcioni, M.; Corso, A. D.; de Gironcoli, S. Phys. Rev. B 2003, 67, 094106. https://doi.org/10.1103/PhysRevB.67.094106
  16. Mott, N. F. Metal-Insulator Transitions; Taylor and Frances: London, 1974.
  17. Mott, N. F. Metal-Insulator Transitions, 2nd ed.; Taylor & Francis: New York, 1990.
  18. Anisimov, V. I.; Zaanen, J.; Andersen, O. K. Phys. Rev. B 1991, 44, 943. https://doi.org/10.1103/PhysRevB.44.943
  19. Jiang, X.; Guo, G. Y. Phys. Rev. B 2004, 69, 155108. https://doi.org/10.1103/PhysRevB.69.155108
  20. Whangbo, M.-H.; Koo, H.-J.; Dai, D. J. Solid State Chem. 2003, 176, 417. https://doi.org/10.1016/S0022-4596(03)00273-1
  21. Kroger, F. A. The Chemistry of Imperfect Crystals; North-Holland Pub. Co.: Amsterdam, 1974.
  22. Tyburczy, J. A.; Fisler, D. K. Electrical Properties of Minerals and Melts; In Mineral Physics and Crystallography, A Handbook of Physical Constants; Amer. Geophys. Union: Washington, D. C., 1995; pp 185-208.
  23. Coropceanu, V.; André, J. M.; Malagori, M.; Brédas, J. L. Theo. Chem. Acc. 2003, 110, 59. https://doi.org/10.1007/s00214-003-0445-3
  24. Newton, M. D. Electron Transfer: Theoretical Models and Computational Implementation, In Electron Transfer in Chemistry; Balzani, V., Ed.; Wiley-VCH: New York, 2001; Chap. 1.
  25. Marcus, R. A. Rev. Mod. Phys. 1993, 65, 599. https://doi.org/10.1103/RevModPhys.65.599
  26. Albright, T. A.; Burdett, J. K.; Whangbo, M.-H. Orbital Interactions in Chemistry; Wiley: New York, 198; Chapter 2.
  27. Koo, H.-J.; Whangbo, M.-H.; Coste, S.; Jobic, S. J. Solid State Chem. 2001, 156, 464. https://doi.org/10.1006/jssc.2000.9025
  28. Dai, D.; Koo, H.-J.; Whangbo, M.-H. In MRS Symposium Proceedings, Vol. 658; Geselbracht, M. J., Greedan, J. E., Johnson, D. C., Subramanian, M. A., Eds.; Materials Research Society: Warrendale, PA, 2001; GG5.3.1-5.3.11.
  29. Whangbo, M.-H.; Koo, H.-J.; Dai, D.; Jung, D. Inorg. Chem. 2002, 41, 5575. https://doi.org/10.1021/ic0202458
  30. Whangbo, M.-H.; Koo, H.-J.; Dumas, J.; Continentino, M. A. Inorg. Chem. 2002, 41, 2193. https://doi.org/10.1021/ic010956q
  31. Clementi, E.; Roetti, C. Atomic Data Nuclear Data Tables 1974, 14, 177. https://doi.org/10.1016/S0092-640X(74)80016-1
  32. Dai, D.; Ren, J.; Liang, W.; Whangbo, M.-H. http://chvamw.chem.ncsu.edu/, 2002.
  33. Ammeter, J.; Bürgi, H.-B.; Thibeault, J.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 3686. https://doi.org/10.1021/ja00480a005
  34. Lee, K. H.; Dieckmann, R.; Lee, C.; Whangbo, M.-H. Chem. Mater. 2007, 19, 4393. https://doi.org/10.1021/cm071481p