• Title/Summary/Keyword: integral solution

검색결과 615건 처리시간 0.022초

LEGENDRE EXPANSION METHODS FOR THE NUMERICAL SOLUTION OF NONLINEAR 2D FREDHOLM INTEGRAL EQUATIONS OF THE SECOND KIND

  • Nemati, S.;Ordokhani, Y.
    • Journal of applied mathematics & informatics
    • /
    • 제31권5_6호
    • /
    • pp.609-621
    • /
    • 2013
  • At present, research on providing new methods to solve nonlinear integral equations for minimizing the error in the numerical calculations is in progress. In this paper, necessary conditions for existence and uniqueness of solution for nonlinear 2D Fredholm integral equations are given. Then, two different numerical solutions are presented for this kind of equations using 2D shifted Legendre polynomials. Moreover, some results concerning the error analysis of the best approximation are obtained. Finally, illustrative examples are included to demonstrate the validity and applicability of the new techniques.

공정분산 관리를 위한 누적합 관리도 (Cusum Control Chart for Monitoring Process Variance)

  • 이윤동;김상익
    • 품질경영학회지
    • /
    • 제33권3호
    • /
    • pp.149-155
    • /
    • 2005
  • Cusum control chart is used for the purpose of controling the process mean. We consider the problem related to cusum chart for controling process variance. Previous researches have considered the same problem. The main difficulty shown in the related researches was to derive the ARL function which characterizes the properties of the chart. Sample variance, differently with sample mean, follows chi-squared type distribution, even when the quality characteristics are assumed to be normally distributed. The ARL function of cusum is described by a type of integral equation. Since the solution of the integral equation for non-normal distribution is not known well, people used simulation method instead of solving the integral equation directly, or approximation method by taking logarithm of the sample variance. Recently a new method to solve the integral equation for Erlang distribution was published. Here we consider the steps to apply the solution to the problem of controling process variance.

Application of the Boundary Element Method to Finite Deflection of Elastic Bending Plates

  • Kim, Chi Kyung
    • International Journal of Safety
    • /
    • 제2권1호
    • /
    • pp.39-44
    • /
    • 2003
  • The present study deals with an approximate integral equation approach to finite deflection of elastic plates with arbitrary plane form. An integral formulation leads to a system of boundary integral equations involving values of deflection, slope, bending moment and transverse shear force along the edge. The basic principles of the development of boundary element technique are reviewed. A computer program for solving for stresses and deflections in a isotropic, homogeneous, linear and elastic bending plate is developed. The fundamental solution of deflection and moment is employed in this program. The deflections and moments are assumed constant within the quadrilateral element. Numerical solutions for sample problems, obtained by the direct boundary element method, are presented and results are compared with known solutions.

Numerical Solution of the Radiation Problem by the B-Spline Higher Order Kelvin Panel Method for a Half-Immersed Cylinder in Wave and Current

  • Hong, Do-Chun
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 추계학술대회 논문집
    • /
    • pp.184-188
    • /
    • 2000
  • The improved Green integral equation of overdetermined type applied to the radiation problem for an oscillating cylinder in the presence of weak current is presented. A two-dimensional Green function for the weak current is also presented. The present numerical solution of the Improved Green integral equation by the B-spline higher order Kelvin panel method is shown to be free of irregular frequencies which are present in the usual Green integral equation.

  • PDF

Analysis of orthotropic plates by the two-dimensional generalized FIT method

  • Zhang, Jinghui;Ullah, Salamat;Gao, Yuanyuan;Avcar, Mehmet;Civalek, Omer
    • Computers and Concrete
    • /
    • 제26권5호
    • /
    • pp.421-427
    • /
    • 2020
  • In this study, the two-dimensional generalized finite integral transform(FIT) approach was extended for new accurate thermal buckling analysis of fully clamped orthotropic thin plates. Clamped-clamped beam functions, which can automatically satisfy boundary conditions of the plate and orthogonality as an integral kernel to construct generalized integral transform pairs, are adopted. Through performing the transformation, the governing thermal buckling equation can be directly changed into solving linear algebraic equations, which reduces the complexity of the encountered mathematical problems and provides a more efficient solution. The obtained analytical thermal buckling solutions, including critical temperatures and mode shapes, match well with the finite element method (FEM) results, which verifies the precision and validity of the employed approach.

공정분산 관리를 위한 누적합 관리도 (Cusum control chart for monitoring process variance)

  • 이윤동;김상익
    • 한국품질경영학회:학술대회논문집
    • /
    • 한국품질경영학회 2006년도 춘계학술대회
    • /
    • pp.135-141
    • /
    • 2006
  • Cusum control chart is used for the purpose of controling the process mean. We consider the problem related to cusum chart for controling process variance. Previous researches have considered the same problem. The main difficulty shown in the related researches was to derive the ARL function which characterizes the properties of the chart. Sample variance, differently with sample mean, follows chi-squared type distribution, even when the quality characteristics are assumed to be normally distributed. The ARL function of cusum is described by a type of integral equation. Since the solution of the integral equation for non-normal distribution is not known well, people used simulation method instead of solving the integral equation directly, or approximation method by taking logarithm of the sample variance. Recently a new method to solve the integral equation for Erlang distribution was published. Here we consider the steps to apply the solution to the problem of controling process variance.

  • PDF

Non-stationary mixed problem of elasticity for a semi-strip

  • Reut, Viktor;Vaysfeld, Natalya;Zhuravlova, Zinaida
    • Coupled systems mechanics
    • /
    • 제9권1호
    • /
    • pp.77-89
    • /
    • 2020
  • This study is dedicated to the dynamic elasticity problem for a semi-strip. The semi-strip is loaded by the dynamic load at the center of its short edge. The conditions of fixing are given on the lateral sides of the semi-strip. The initial problem is reduced to one-dimensional problem with the help of Laplace's and Fourier's integral transforms. The one-dimensional boundary problem is formulated as the vector boundary problem in the transform's domain. Its solution is constructed as the superposition of the general solution for the homogeneous vector equation and the partial solution for the inhomogeneous vector equation. The matrix differential calculation is used for the deriving of the general solution. The partial solution is constructed with the help of Green's matrix-function, which is searched as the bilinear expansion. The case of steady-state oscillations is considered. The problem is reduced to the solving of the singular integral equation. The orthogonalization method is applied for the calculations. The stress state of the semi-strip is investigated for the different values of the frequency.

추계론적 이론을 이용한 교량내진거동분석 (Seismic Behaviors of a Bridge System in the Stochastic Perspectives)

  • 마호성
    • 한국지진공학회논문집
    • /
    • 제9권6호
    • /
    • pp.53-58
    • /
    • 2005
  • 본 연구에서는 지진하중을 받는 교량의 거동을 확률밀도함수를 통하여 분석할 수 있는 기법을 개발하였다. 확률밀도함수의 전개는 추계론적 이론을 이용한 반해석적 방법을 통하여 구하였으며, 반해석적 방법은 교량운동방정식으로부터 상응하는 Fokker-Planck equation을 구한 후, path-integral solution을 유도하여 이를 수치적으로 해석함으로써 구할 수 있다. 교량거동의 확률밀도 함수전개로부터 교량거동의 확률적 특성을 파악하고 확률밀도함수의 범위로부터 교량응답거동의 포락선을 얻을 수 있으며 이를 이용하여 최대응답의 범위를 결정할 수 있다는 것을 밝혔다.

APPLICATION OF FIXED POINT THEOREM FOR UNIQUENESS AND STABILITY OF SOLUTIONS FOR A CLASS OF NONLINEAR INTEGRAL EQUATIONS

  • GUPTA, ANIMESH;MAITRA, Jitendra Kumar;RAI, VANDANA
    • Journal of applied mathematics & informatics
    • /
    • 제36권1_2호
    • /
    • pp.1-14
    • /
    • 2018
  • In this paper, we prove the existence, uniqueness and stability of solution for some nonlinear functional-integral equations by using generalized coupled Lipschitz condition. We prove a fixed point theorem to obtain the mentioned aim in Banach space $X=C([a,b],{\mathbb{R}})$. As application we study some volterra integral equations with linear, nonlinear and single kernel.