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ABSTRACT: The improved Green integral equation of overdetermined type applied to the radiation problem
for an oscillating cylinder in the presence of weak current is presented. A two-dimensional Green
function for the weak current is also presented. The present numerical solution of the improved Green

integral equation by the B-spline higher order Kelvin panel method is shown to be free of irregular

{frequencies which are present in the usual Green integral equation.

1. Introduction
When the current is present, the wave field is modified
and it is difficult to formulate the potential problem for
the radiation wave due to an oscillating body. In this
study, it is assumed that the wave is transferred by
the current without deformation. Under the assumption,
the boundary value problem for the radiation potential
in the presence of the uniform horizontal current is
equivalent to the so called, forward speed radiation
problem for a ship advancing in waves. In this paper,
boundary

with weak current

value problem for the
is solved by

the two-dimensional
radiation potential
making use of the improved Green integral equation of
overdetermined type(Hong and Lee 1999) and using the
two-dimensional Kelvin-type Green function.

2. Linearized Boundary-Value Problem
A body is oscillating in the free surface of deep water

under gravity and in the presence a horizontal current
with uniform speed U. The magnitude U % is assumed
to he of O(g) where &, being as small as the wave
slope, is the measure of smallness. let oxy be a
Cartesian co-ordinate system attached to
body,

upward, x in the negative direction of the current

the mean

position of the cylindrical with y vertically

velocity and o in the mean waterplane W . The body
performs simple harmonic oscillations of small amplitude
about its mean position with circular frequency o .

With of the
inviscid fluid and irrotational flow without capillarity,

the usual assumptions incompressible,
the fluid velocity U can be given by the gradient of a
velocity potential ¢ which satisfies the
V=0 the fluid

potential at P in the fluid region can be decomposed

Laplace

equation , in region. Here, the

as follows:
O(P, )=0,(P)~Ux+Re{¥(Ple ™) $))
where ©®, denotes a steady potential due to the

body in the
complex-valued unsteady potential,
both ¢, and ¥ is of Of(¢).

The free surface boundary condition on the mean free

presence of the current, Y a

The magnitude of

surface y=0 is as follows:
B N, = 2
(61 tu-Vip=0 on y=0 (2)

where p denotes the pressure :



09 vY
p=-p( 3 ' o ) (3)
Substituting (1) and (3) into (2), the following free
surface boundary conditions for ¢. and ¥ can be
found respectively:

Y 2 )
[u- ;x2 +g—5—;]¢5=0 on y=0 (4)
[(-0*+2i002— +g-218=0 on y=0 5)

dx ay

Under the assumption of small amplitude oscillation, the
—
displacement vector A(M) of a point M on the

wetted surface S of the body at its mean position can
be expressed as follows:

—

AM)=Rela(M)e ™), MEeS 6)

aA(M)= AZ“:]ak'ék+a:{eﬁ>< OM, MEeS 7

where a,{k=1,2,3) denotes complex valued amplitude

of sway, heave, roll respectively and O the center of
rotation of the body.
condition on S, the

Applying the impermeability

following body boundary condition can be found:

(n +ase, Xn) - Vide-Ux+¥)
(8)

- —> — .
=(n+aze; X n) - (-jva)

where n denotes a unit normal to S directed into the
fluid region, at its mean position and (_r;+a3z; X—r;)
the Taylor expansion of the normal at its instantaneous
position.
Neglecting  second-order

quantities, the following

linearized body boundary condition for ¢, and ¥ can

be found respectively:

30, ‘
e =Un, on S 9)
S Wi Revan, on s (10)

With these linearized boundary conditions on $ and on

vy =0, the unsteady potential and the steady potential

problems can be solved independently and the latter will
be dropped from the present study.
The unsteady potential is

known as the radiation

potential ¥, which can be decomposed as follows:

3
W”:‘l‘mkz:‘ak?k“L/ang an

Then the body boundary conditions for ¥,(k=1,2,3)

are
¥ ) _ ‘
an M on S, k=12 (12)
a',fi — —_— i . .
3 ={eyx OM)-n on S (13)
ng

The potentials ¥,(k=1,2,3)

free surface boundary condition (5) and the radiation
condition at infinity.

must also satisfy the

3. Improved Green Integral Equation

is of O(gj, the
function{Haskind

Since we have assumed that U/~
two-dimensional Kelvin-type Green
1954) can be simplified as follows:

Glzpza) :,—21~1ee log (—2L22M )
' S (1)
.1

+I]+Iij}'l__2_;[' ]m{1|_1‘r}
with
1= =L e (Em, (1)) + 2in) 15)
1= ]"'ZY e m, 1 1 (1o
I= = “Em,(1,) (16)
2 1‘2Y ! 2
U= -ikilzp - zy), j=1,2 a7

0’ .

= . :1,2

M ez 1)
where z=x+iy denotes the complex plane, g the

gravitational acceleration and z,, 2z, the source and

field points respectively. v=ww/g is known as the
Em,(0}) is the maodified

exponential integral defined as follows;

Brard number. complex

E(T) for Im(1)>0
Eml((): {

Ef3)-2in  for Im(3)<0
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Discretization of the body surface in (26) into a set of

curvilinear segments s, (s=0,1,2,,,N>-1) . owill
then vield (Lee and Kerwin 1999):
N1 N-1 A
1 v ac’
aP) TUN DR NS
S2iN[ (YT G- (YT G ) (28)

oy
= > | Z=Gdl, PeE SUW
S Aoon

The number of unknown potential vertices N° is
greater than the number of the curvilinear segments or
panels since N'=N"+p according to the properties of
the B-spline basis functions. Since the equation (26) is
overdetermined, we can place any number of control
points N” on SUW which is greater than or equal to
NY. This linear system will be solved by the usual
Gauss elimination when N =N" and by a least square

approach when N’ >N*

5. Numerical Results and Discussion
The hydrodynamic pressure forces due to the unsteady
potential can be obtained as

F=-[pna (29)
Substituting (3) and (8) into (29) and introducing
non-dimensional added-mass and wave-damping
coefficients M, and Dj, we have the following

expression for F, :

'i .. -
F,f=-pAkZ| [Mya,+0oDgal, i=12 (22)
where A denotes the sectional area of the cylinder.
immersed
Froude

The hydrodynamic coefficients of a half

circular cylinder are computed for various

numbers, F,=u/VgD , based on the diameter of the

circle D=1 . They are all plotted as functions of
K=uV D/g

After extensive numerical tests for the convergence, 30
higher order panels with 60 control points in S are
emploved as well as 38 control points in W to show
the present numerical values for two different Froude

numbers: F,=0.05 and F,=0.099

We have found numerically that the
frequencies exist in the solution of the Green integral
equation (22) denoted by GIE while the solution of the

improved Green integral equation (26) denoted by IGIE,

irregular

is free of the irregular frequencies as shown Figure (1),

—8— F,_=0.05GIE

-~-©-- F, =0.099 GIE
——<«—— F_=0.05IGIE

} ——a—— F_=0.099 IGIE
046}
044}
0.42fF

04f

0.38F

0.36—

Fig. 1 Irregular frequencies in the sway

wave-damping coefficients

The hydrodynamic coefficients computed by making use
of the improved Green
presented in Figures (2) and (3).

integral equation has been

08|
0.6
0.4

0.2]

Fig. 1 Sway wave-damping coefficients
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where E({) is the complex exponential integral.
It should be noted that the present simplification is
valid for v<1/2.

The above Green function G(P,M) satisfies the
following equations:
VLG(P,M) =0 for P=M (19)
2 , 0 Iel .
(-0 +21an A YG(P,M)
xr ye 20)
=0 for yu<0 and yp<0

The adjoint free surface condition for G (P,M) is as

follows :
(-0* ~2i0U—2— 1 g =)y Gopm)
Xp Ym (21)
=0 for yp<0 and yu <0
Applying Green's theorem to the potential ¥ and the
Green function (& over the fluid region D,, the

following Green integral equation for weak current can
be obtained :

: +f@—%%dl—Ziv[(w(})(-—(‘l'G),)]
- S (22)
- [2XGa on s
s dn
Here, the suffixes € and D denote the two
intersecting  points  of S and y=0 where

two-dimensional line integrals are to be calculated(Hong
2000).

According to the theory of integral equation, an integral
equation must contain all the boundary conditions of the
boundary value problem in question. But, it seems that
some boundary conditions are missing in equation (22).
Let the surface in contact with the fluid be the positive
side of the boundary surface and the other side of the
outstde D, of the

same surface the negative side

surface. The wetted surface will be denoted hy S
hereafter. According to the potential theory, the potential
jump across S which has been incorporated in (22)
implies that the condition ¥=0 1$ imposed on S
the negative side of S. In fact, it was necessary Lo
impose $(FP)=0 when P lies on the negative side of

the free surface F, as it is done in the Green integral

equation with the Rankine-type Green Function. Thus,
in order to ensure the uniqueness of the solution, it is
necessary to impose the following condition:

¥=0 on F, (23)

The condition in the infinity can be omitted since ¥

vanishes there. But, since the integral over the

boundary surface F, was already replaced by hne
integrals, it is not desirable to reintroduce F . into the
present Green integral equation. Instead, let us impose
the following supplementary condition for ¥ which can

compensate for the condition (23):

Y(PY=0 for PE W (24)
This condition is equivalent to

fl!—a—cidz SN[ G- (G )

s dn (23)

:f o il oon W
s dn

Combining the equation (25) with (22), we have the
following integral equation, say, the improved Green
integral equation of overdetermined type:
0 GPM)
a(P)'l(P)+LW(M) Sl
2 (B (MOYGPM )~ (W (MHG(P,M )1 (26)
- [ B e man,
A Nas
where
*;— for P& S
apy= | (26)
0 for P = W

4. B-Spline Higher Order Panel Method
We will represent the potential as a weighted sum of
B-spline basis functions as follows;

N
Y= gw;N,(w on SUW (27
where N,;(u) are the p-th degree B-spline basis

functions, ¥; the potential control vertices.
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Fig.3. Heave added-mass coefficients

It should be noted that the improved Green integral
equation which was presented by Hong(2000) without
is different from the
equation of overdetermined type
(26). The supplementary boundary
on W presented by Hong(2000) was

numerical validation improved
integral

presented by

Green

condition for ¥
not complete.

6. Conclusions

1. An improved Green integral equation of
overdetermined type as well as a Kelvin-type Green
function for the radiation potential due to an oscillating
surface-piercing cylinder in the presence of weak
current, have been presented.

2. It has been shown that there exist irregular
frequencies in the solution of the two-dimensional
forward-speed  Green
surface-piercing cylinder.

integral equation for a

3. The solution of the improved Green integral equation
is shown to be free of irregular frequencies.
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