References
- A. Alipanah, S. Smaeili, Numerical solution of the two-dimensional Fredholm integral equations using Gaussian radial basis function, Journal of Computational and Applied Mathematics, 235(2011), 5342-5347. https://doi.org/10.1016/j.cam.2009.11.053
- K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge, Cambridge University Press, 1997.
- K. Atkinson, W. Han, Theoretical Numerical Analysis: a Functional Analysis Framework, Springer-Verlag New York, INC, 2001.
- E. Babolian, S. Bazm, P. Lima, Numerical solution of nonlinear two-dimensional integral equations using rationalized Haar functions, Communications in Nonlinear Science and Numerical Simulation, 16(2011), 1164-1175. https://doi.org/10.1016/j.cnsns.2010.05.029
- L. M. Delves, J. L. Mohamed, Computational Methods for Integral Equations, Cambridge, Cambridge University Press, 1985.
- M. Gasea, T. Sauer, On the history of multivariate polynomial interpolation, Journal of Computational and Applied Mathematics, 122(2000), 23-35. https://doi.org/10.1016/S0377-0427(00)00353-8
- H. Guoqiang, W. Jiong, Extrapolation of Nystrom solution for two dimensional nonlin- ear Fredholm integral equations, Journal of Computational and Applied Mathematics, 134(2001), 259-268. https://doi.org/10.1016/S0377-0427(00)00553-7
- G. Han, R. Wang, Richardson extrapolation of iterated discrete Galerkin solution for two dimensional Fredholm integral equations, Journal of Computational and Applied Mathematics, 139 (2002) 49-63. https://doi.org/10.1016/S0377-0427(01)00390-9
- A. J. Jerri, Introduction to Integral Equations with Applications, INC, John Wiley and Sons, 1999.
- R. Kress, Linear Integral Equations, Springer-Verlag, 1999.
- E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley and Sons, 1989.
- P. K. Kythe, P. Puri, Computational Methods for Linear Integral Equations, Birkhuser, Boston, 2002.
- P. Lancaster, The Theory of Matrices: with Applications, second ed., Academic Press, New York, 1984.
- A. Tari, S. Shahmorad, A computational method for solving two-dimensional Linear Fred- holm integral equations of the second kind, ANZIAM J., 49(2008), 543-549. https://doi.org/10.1017/S1446181108000126
- W. J. Xie, F. R. Lin, A fast numerical solution method for two dimensional Fredholm integral equations of the second kind, Applied Numerical Mathematics, 59(2009), 1709-1719. https://doi.org/10.1016/j.apnum.2009.01.009
Cited by
- The use of Jacobi polynomials in the numerical solution of coupled system of fractional differential equations vol.92, pp.7, 2015, https://doi.org/10.1080/00207160.2014.945919
- Numerical Solutions of Coupled Systems of Fractional Order Partial Differential Equations vol.2017, 2017, https://doi.org/10.1155/2017/1535826
- New Algorithm based on Shifted Legendre Polynomials for Fractional Partial Differential Equations vol.10, pp.12, 2017, https://doi.org/10.17485/ijst/2017/v10i12/112972
- A new method based on legendre polynomials for solution of system of fractional order partial differential equations vol.91, pp.12, 2014, https://doi.org/10.1080/00207160.2014.880781
- Some new operational matrices and its application to fractional order Poisson equations with integral type boundary constrains 2016, https://doi.org/10.1016/j.camwa.2016.04.014
- Numerical solution of fractional delay differential equation by shifted Jacobi polynomials vol.94, pp.3, 2017, https://doi.org/10.1080/00207160.2015.1114610
- Legendre Polynomials Operational Matrix Method for Solving Fractional Partial Differential Equations with Variable Coefficients vol.2015, 2015, https://doi.org/10.1155/2015/915195
- New Operational Matrix of Integrations and Coupled System of Fredholm Integral Equations vol.2014, 2014, https://doi.org/10.1155/2014/146013
- A generalized scheme based on shifted Jacobi polynomials for numerical simulation of coupled systems of multi-term fractional-order partial differential equations vol.20, pp.1, 2013, https://doi.org/10.1112/s146115701700002x
- The novel operational matrices based on 2D-Genocchi polynomials: solving a general class of variable-order fractional partial integro-differential equations vol.39, pp.4, 2013, https://doi.org/10.1007/s40314-020-01314-4
- A Novel Method for Solution of Fractional Order Two-Dimensional Nonlocal Heat Conduction Phenomena vol.2021, pp.None, 2013, https://doi.org/10.1155/2021/1067582