• Title/Summary/Keyword: integral image

Search Result 332, Processing Time 0.025 seconds

Analysis of errors on the depth perception through binocular disparity in integral imaging

  • Kim, Joo-Hwan;Kim, Yun-Hee;Lee, Byoung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1322-1325
    • /
    • 2006
  • Integral imaging is a three-dimensional display method which has full parallax and continuous viewpoints. However, we found an error between the depth expressed by integral imaging and the depth perceived by the observer through binocular disparity. We analyze the depth perception errors of the threedimensional image constructed by integral imaging.

  • PDF

A Prioritized Transmission Scheme for Three-Dimensional Integral Imaging (3차원 집적 영상을 위한 우선순위 전송 기법)

  • Cho, Myungjin;Choi, Hyun-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.5
    • /
    • pp.447-455
    • /
    • 2014
  • In this paper, we consider a representative integral imaging method in glasses-free 3D image processing and propose a prioritized transmission scheme for guaranteeing a received video quality in error-prone environments. According to the correlation of pixels consisting of each voxel of integral image, we set the priority differently and apply the modulation level according to this priority value. That is to say, the corresponding pixels with small variance are set to a high priority and transmitted by using a low level modulation that is robust under transmission errors, but the corresponding pixels with greater variance are set to a lower priority and transmitted by using a high level modulation that has a high bit error rate but fast transmission rate. Result shows that the proposed scheme that applies the error-robust modulation level to the important image bit stream with the high priority improves the peak to sidelobe ratio (PSR) of the received 3D image, compared with a typical method that use the same modulation level without distinction of priorities.

Fast Pedestrian Detection Using Estimation of Feature Information Based on Integral Image (적분영상 기반 특징 정보 예측을 통한 고속 보행자 검출)

  • Kim, Jae-Do;Han, Young-Joon
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.469-477
    • /
    • 2013
  • This paper enhances the speed of a pedestrian detection using an estimation of feature information based on integral image. Pedestrian model or input image should be resized to the size of various pedestrians. In case that the size of pedestrian model would be changed, pedestrian models with respect to the size of pedestrians should be required. Reducing the size of pedestrian model, however, deteriorates the quality of the model information. Since various features according to the size of pedestrian models should be extracted, repetitive feature extractions spend the most time in overall process of pedestrian detection. In order to enhance the processing time of feature extraction, this paper proposes the fast extraction of pedestrian features based on the estimate of integral image. The efficiency of the proposed method is evaluated by comparative experiments with the Channel Feature and Adaboost training using INRIA person dataset.

Investigation of the Validity of the Image Model for the Analysis of Spherical Wave Reflection

  • Suh, Jin-Sung;Cheung, Wan-Sup
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.3E
    • /
    • pp.27-34
    • /
    • 1998
  • The validity of the image model is investigated both analytically and experimentally in a half space with an infinite single reflecting surface present. This paper exploits the Sommerfeld integral that represents the exact solution for the reflected field in the half space. The solution is shown to be obtained by direct numerical integration which yields more accurate and stable results. The predicted results from the image model are compared to those from the direct numerical integration of the Sommerfeld integral. It is also experimentally demonstrated that the image model gives acceptably accurate results. It is of significance that this paper reveals analytical and experimental validation of using the image model except near-grazing incidence.

  • PDF

3D image encryption using integral imaging scheme and pixel-scrambling technology (집적 영상 방식과 랜덤 픽셀 스크램블링 기술을 이용한 3D 영상 암호화)

  • Piao, Yong-Ri;Kim, Seok-Tae;Kim, Eun-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.85-88
    • /
    • 2008
  • 본 논문에서는 집적 영상 (integral imaging) 방식과 픽셀 스크램블링 (pixel scrambling) 기술을 이용한 광 영상 암호화 (optical image encryption) 방법을 제안한다. 제안한 방법의 부호화 과정에서는 먼저 입력영상을 여러 개의 작은 사이즈의 블록으로 나누어 픽셀 스크램블링을 한 다음 집적 영상 기술을 이용하여 요소 영상(elemental image)을 생성하고, 이 영상의 안정성을 위하여 2차 픽셀 스크램블링을 수행하여 최종 암호화된 영상을 얻는다. 그리고 복호화 과정에서는 암호화된 영상에 광학적인 집적 영상 복원 기법과 역 픽셀 스크램블링 방법을 사용하여 원 영상을 복원한다. 제안하는 광 암호화 방법에 대해서 크로핑과 같은 데이터 손실 및 노이즈에 대한 컴퓨터 적으로 모의실험을 수행하여 강인성과 유용성을 보였다.

  • PDF

Resolution-enhanced Reconstruction of 3D Object Using Depth-reversed Elemental Images for Partially Occluded Object Recognitionz

  • Wei, Tan-Chun;Shin, Dong-Hak;Lee, Byung-Gook
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.139-145
    • /
    • 2009
  • Computational integral imaging (CII) is a new method for 3D imaging and visualization. However, it suffers from seriously poor image quality of the reconstructed image as the reconstructed image plane increases. In this paper, to overcome this problem, we propose a CII method based on a smart pixel mapping (SPM) technique for partially occluded 3D object recognition, in which the object to be recognized is located at far distance from the lenslet array. In the SPM-based CII, the use of SPM moves a far 3D object toward the near lenslet array and then improves the image quality of the reconstructed image. To show the usefulness of the proposed method, we carry out some experiments for occluded objects and present the experimental results.

3D Image Display Method using Synthetic Aperture integral imaging (Synthetic aperture 집적 영상을 이용한 3D 영상 디스플레이 방법)

  • Shin, Dong-Hak;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.2037-2042
    • /
    • 2012
  • Synthetic aperture integral imaging is one of promising 3D imaging techniques to capture the high-resolution elemental images using multiple cameras. In this paper, we propose a method of displaying 3D images in space using the synthetic aperture integral imaging technique. Since the elemental images captured from SAII cannot be directly used to display 3D images in an integral imaging display system, we first extract the depth map from elemental images and then transform them to novel elemental images for 3D image display. The newly generated elemental images are displayed on a display panel to generate 3D images in space. To show the usefulness of the proposed method, we carry out the preliminary experiments using a 3D toy object and present the experimental results.

Optimum parameters of 3D integral imaging system (3차원 집적 영상 시스템의 최적 파라미터)

  • Cho, Myungjin;Lee, Byonggook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.1019-1022
    • /
    • 2012
  • Integral imaging is a promising technology for 3D imaging and display. Many parameters affect the performance of 3D integral imaging systems. Enhanced system performance is acquired by optimization of these system parameters with respect to defined performance metrics. In this paper, we present an approach to optimize the performance of 3D integral imaging system in terms of performance metrics under fixed resource constraints. In this analysis, system parameters such as lens numerical aperture, pitch between image sensors, the number of image sensors, the pixel size, and the number of pixels are determined to optimize performance metrics. Wave optics is utilized to describe the imaging process.

  • PDF

Parallel Processing for Integral Imaging Pickup Using Multiple Threads

  • Jang, Young-Hee;Park, Chan;Park, Jae-Hyeung;Kim, Nam;Yoo, Kwan-Hee
    • International Journal of Contents
    • /
    • v.5 no.4
    • /
    • pp.30-34
    • /
    • 2009
  • Many studies have been done on the integral imaging pickup whose objective is to get efficiently elemental images from a lens array with respect to three-dimensional (3D) objects. In the integral imaging pickup process, it is necessary to render an elemental image from each elemental lens in a lens array for 3D objects, and then to combine them into one total image. The multiple viewpoint rendering (MVR) is one of various methods for integral imaging pickup. This method, however, has the computing and rendering time problem for obtaining element images from a lot of elemental lens. In order to solve the problems, in this paper, we propose a parallel MVR (PMVR) method to generate elemental images in a parallel through distribution of elemental lenses into multiple threads simultaneously. As a result, the computation time of integral imaging using PMVR is reduced significantly rather than a sequential approach and then we showed that the PMVR is very useful.

Synthesis method of elemental images from Kinect images for space 3D image (공간 3D 영상디스플레이를 위한 Kinect 영상의 요소 영상 변환방법)

  • Ryu, Tae-Kyung;Hong, Seok-Min;Kim, Kyoung-Won;Lee, Byung-Gook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.162-163
    • /
    • 2012
  • In this paper, we propose a synthesis method of elemental images from Kinect images for 3D integral imaging display. Since RGB images and depth image obtained from Kinect are not able to display 3D images in integral imaging system, we need transform the elemental images in integral imaging display. To do so, we synthesize the elemental images based on the geometric optics mapping from the depth plane images obtained from RGB image and depth image. To show the usefulness of the proposed system, we carry out the preliminary experiments using the two person object and present the experimental results.

  • PDF