• Title/Summary/Keyword: integers modulo n

Search Result 22, Processing Time 0.021 seconds

SEMI-PRIMITIVE ROOT MODULO n

  • Lee, Ki-Suk;Kwon, Mi-Yeon;Kang, Min-Kyung;Shin, Gi-Cheol
    • Honam Mathematical Journal
    • /
    • v.33 no.2
    • /
    • pp.181-186
    • /
    • 2011
  • Consider a multiplicative group of integers modulo n, denoted by $\mathbb{Z}_n^*$. Any element $a{\in}\mathbb{Z}_n^*$ n is said to be a semi-primitive root if the order of a modulo n is $\phi$(n)/2, where $\phi$(n) is the Euler phi-function. In this paper, we classify the multiplicative groups of integers having semi-primitive roots and give interesting properties of such groups.

MULTIPLICATIVE GROUPS OF INTEGERS WITH SEMI-PRIMITIVE ROOTS MODULO n

  • Lee, Ki-Suk;Kwon, Miyeon;Shin, GiCheol
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.1
    • /
    • pp.71-77
    • /
    • 2013
  • Consider a multiplicative group of integers modulo $n$, denoted by $\mathbb{Z}_n^*$. Any element $a{\in}\mathbb{Z}_n^*$ is said to be a semi-primitive root if the order of $a$ modulo $n$ is ${\phi}(n)/2$, where ${\phi}(n)$ is the Euler phi-function. In this paper, we discuss some interesting properties of the multiplicative groups of integers possessing semi-primitive roots and give its applications to solving certain congruences.

General Linear Group over a Ring of Integers of Modulo k

  • Han, Juncheol
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.255-260
    • /
    • 2006
  • Let $m$ and $k$ be any positive integers, let $\mathbb{Z}_k$ the ring of integers of modulo $k$, let $G_m(\mathbb{Z}_k)$ the group of all $m$ by $m$ nonsingular matrices over $\mathbb{Z}_k$ and let ${\phi}_m(k)$ the order of $G_m(\mathbb{Z}_k)$. In this paper, ${\phi}_m(k)$ can be computed by the following investigation: First, for any relatively prime positive integers $s$ and $t$, $G_m(\mathbb{Z}_{st})$ is isomorphic to $G_m(\mathbb{Z}_s){\times}G_m(\mathbb{Z}_t)$. Secondly, for any positive integer $n$ and any prime $p$, ${\phi}_m(p^n)=p^{m^2}{\cdot}{\phi}_m(p^{n-1})=p{^{2m}}^2{\cdot}{\phi}_m(p^{n-2})={\cdots}=p^{{(n-1)m}^2}{\cdot}{\phi}_m(p)$, and so ${\phi}_m(k)={\phi}_m(p_1^n1){\cdot}{\phi}_m(p_2^{n2}){\cdots}{\phi}_m(p_s^{ns})$ for the prime factorization of $k$, $k=p_1^{n1}{\cdot}p_2^{n2}{\cdots}p_s^{ns}$.

  • PDF

ON STRONG METRIC DIMENSION OF ZERO-DIVISOR GRAPHS OF RINGS

  • Bhat, M. Imran;Pirzada, Shariefuddin
    • Korean Journal of Mathematics
    • /
    • v.27 no.3
    • /
    • pp.563-580
    • /
    • 2019
  • In this paper, we study the strong metric dimension of zero-divisor graph ${\Gamma}(R)$ associated to a ring R. This is done by transforming the problem into a more well-known problem of finding the vertex cover number ${\alpha}(G)$ of a strong resolving graph $G_{sr}$. We find the strong metric dimension of zero-divisor graphs of the ring ${\mathbb{Z}}_n$ of integers modulo n and the ring of Gaussian integers ${\mathbb{Z}}_n$[i] modulo n. We obtain the bounds for strong metric dimension of zero-divisor graphs and we also discuss the strong metric dimension of the Cartesian product of graphs.

THE JACOBI SUMS OVER GALOIS RINGS AND ITS ABSOLUTE VALUES

  • Jang, Young Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.571-583
    • /
    • 2020
  • The Galois ring R of characteristic pn having pmn elements is a finite extension of the ring of integers modulo pn, where p is a prime number and n, m are positive integers. In this paper, we develop the concepts of Jacobi sums over R and under the assumption that the generating additive character of R is trivial on maximal ideal of R, we obtain the basic relationship between Gauss sums and Jacobi sums, which allows us to determine the absolute value of the Jacobi sums.

NONBIJECTIVE IDEMPOTENTS PRESERVERS OVER SEMIRINGS

  • Orel, Marko
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.805-818
    • /
    • 2010
  • We classify linear maps which preserve idempotents on $n{\times}n$ matrices over some classes of semirings. Our results include many known semirings like the semiring of all nonnegative integers, the semiring of all nonnegative reals, any unital commutative ring, which is zero divisor free and of characteristic not two (not necessarily a principal ideal domain), and the ring of integers modulo m, where m is a product of distinct odd primes.

THE ZERO-DIVISOR GRAPHS OF ℤ(+)ℤn AND (ℤ(+)ℤn)[X]]

  • PARK, MIN JI;JEONG, JONG WON;LIM, JUNG WOOK;BAE, JIN WON
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.729-740
    • /
    • 2022
  • Let ℤ be the ring of integers and let ℤn be the ring of integers modulo n. Let ℤ(+)ℤn be the idealization of ℤn in ℤ and let (ℤ(+)ℤn)[X]] be either (ℤ(+)ℤn)[X] or (ℤ(+)ℤn)[[X]]. In this article, we study the zero-divisor graphs of ℤ(+)ℤn and (ℤ(+)ℤn)[X]]. More precisely, we completely characterize the diameter and the girth of the zero-divisor graphs of ℤ(+)ℤn and (ℤ(+)ℤn)[X]]. We also calculate the chromatic number of the zero-divisor graphs of ℤ(+)ℤn and (ℤ(+)ℤn)[X]].

Ideals of the Multiplicative Semigroups ℤn and their Products

  • Puninagool, Wattapong;Sanwong, Jintana
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.1
    • /
    • pp.41-46
    • /
    • 2009
  • The multiplicative semigroups $\mathbb{Z}_n$ have been widely studied. But, the ideals of $\mathbb{Z}_n$ seem to be unknown. In this paper, we provide a complete descriptions of ideals of the semigroups $\mathbb{Z}_n$ and their product semigroups ${\mathbb{Z}}_m{\times}{\mathbb{Z}}_n$. We also study the numbers of ideals in such semigroups.

GALOIS POLYNOMIALS FROM QUOTIENT GROUPS

  • Lee, Ki-Suk;Lee, Ji-eun;Brandli, Gerold;Beyne, Tim
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.309-319
    • /
    • 2018
  • Galois polynomials are defined as a generalization of the cyclotomic polynomials. The definition of Galois polynomials (and cyclotomic polynomials) is based on the multiplicative group of integers modulo n, i.e. ${\mathbb{Z}}_n^*$. In this paper, we define Galois polynomials which are based on the quotient group ${\mathbb{Z}}_n^*/H$.