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SEMI-PRIMITIVE ROOT MODULO n

Ki-Suk Lee, Miyeon Kwon, Min Kyung Kang and GiCheol
Shin

Abstract. Consider a multiplicative group of integers modulo n,
denoted by Z∗

n. Any element a ∈ Z∗
n is said to be a semi-primitive

root if the order of a modulo n is φ(n)/2, where φ(n) is the Euler
phi-function. In this paper, we classify the multiplicative groups of
integers having semi-primitive roots and give interesting properties
of such groups.

Given a positive integer n, the integers between 1 and n which are
coprime to n form a group with multiplication modulo n as the operation
[4]; it is denoted by Z∗n and is called the multiplicative group of integers
modulo n. For any integer a coprime to n, Euler’s theorem states that
aφ(n) ≡ 1 mod n, where φ(n) is the Euler phi-function [1], that is, the
number of elements in Z∗n and a is said to be a primitive root modulo n
if the order of a modulo n is equal to φ(n). It is well known [5] that Z∗n
has a primitive root, equivalently, Z∗n is cyclic if and only if n is equal
to 1, 2, 4, pk, or 2pk where pk is a power of an odd prime number. This
leaves us questions about Z∗n that does not possess any primitive roots.

With saying that, the following theorem takes us the first step to
answer the questions on noncyclic multiplicative groups Z∗n.

This lemma is well known [2]: we provides its proof for the reader’s
convenience.

Lemma 1. Z∗
2k
, k > 2, is isomorphic to C2 × C2k−2 . Furthermore,

Z∗2k = {±3i (mod n) : i = 0, 1, · · · , 2k−2 − 1}.

Proof. According to the Euler’s theorem, the order of any odd integer
a modulo 2k must be a power of 2. We will show that the order of 3
modulo n is 2k−2 by evaluating 32

m
modulo 2k.
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First, note that for a given integer m > 0, the Binomial theorem
assures us

(0.1) (2 + 1)2
m

+ 1 = 2`m for some odd integer `m.

By factoring, we get

(2 + 1)2
m − 1 =

(
(2 + 1)

2m−1

+ 1
)
· · ·
(
(2 + 1)2 + 1

)(
(2 + 1) + 1

)(
(2 + 1)− 1

)
=

(
2`m−1

)
· · ·
(
2`2
)(

22
)(

2
)
, where `i is an odd integers

= 2m+2`, where ` is an odd integer.

This implies that 32
m − 1 ≡ 0 (mod 2k)⇒ m+ 2 ≥ k. Therefore, the

order of 3 modulo 2k is 2k−2.

Furthermore, the subgroup
〈
3
〉

of Z∗
2k

generated by 3 does not include

−1: If −1 ∈
〈
3
〉
, −1 ≡ 32

k−3
(mod 2k), the only element of order 2 in〈

3
〉
. This contradicts to (0.1). Therefore, Z∗

2k
=
〈
− 1
〉
×
〈
3
〉
.

Theorem 1. Let Z∗n be the multiplicative group of integers modulo
n. If Z∗n does not have any primitive root, aφ(n)/2 ≡ 1 mod n for any
integer a coprime to n.

Proof. Any integer n greater than 1 can be expressed 2k, pk11 p
k2
2 · · · pkmm ,

or 2kpk11 p
k2
2 · · · pkmm , where pkii is a power of odd prime numbers.

By the preceding lemma, Z2
∼= C1, Z22

∼= C2, and Z∗
2k

(k > 2) ∼=
C2 × C2k−2 . For the other cases, let us recall the Chinese Remainder
Theorem [3]:

Z∗n ∼= Z∗
2k
× Z∗

p
k1
1

× · · · × Z∗
pkmm

∼= C
φ(p

k1
1 )
× · · · × C

φ(pkmm )
if k = 0 or 1;

C2 × Cφ(pk11 )
× · · · × C

φ(pkmm )
if k = 2;

C2 × C2k−2 × C
φ(p

k1
1 )
× · · · × C

φ(pkmm )
if k > 2.

This implies that if Z∗n is not cyclic (equivalently n 6= 2, 4, pk, 2pk),
then Z∗n is the direct product of two or more cyclic subgroups of even
order, say S1, S2, · · · . In that case, the order of any a ∈ Z∗n modulo n
is a factor of the least common multiple of |S1|, |S2|, · · · that is equal

to φ(n)
(|S1|, |S2|, ··· ) = φ(n)

2k , for some integer k, where (a, b) is the greatest

common divisor of a and b. This completes the proof.

This motivates the following definition.
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Definition 1. Let Z∗n be the multiplicative group of integers modulo
n. Any integer a is said to be be a semi-primitive root modulo n if the
order of a modulo n is equal to φ(n)/2.

Clearly, any Z∗n possessing a primitive root a have a semi-primitive
root a2 in Z∗n. If Z∗n is a noncyclic group possessing a semi-primitive
root, the following holds.

Theorem 2. Let Z∗n be the multiplicative group of integers modulo n
that does not possess any primitive root. Then Z∗n has a semi-primitive

root if and only if n is equal to 2k (k > 2), 4pk11 , pk11 p
k2
2 , or 2pk11 p

k2
2 ,

where p1 and p2 are odd prime numbers satisfying (φ(pk11 ), φ(pk22 )) = 2.

Proof. Suppose that Z∗n has a semi-primitive root h. Then there exits
an element a ∈ Z∗n of order 2 such that Z∗n =

〈
a
〉
×
〈
h
〉 ∼= C2 × Cφ(n)/2,

where
〈
a
〉

and
〈
h
〉

are subgroups of Z∗n generated by a and h, respec-
tively. Note that such group does not have a subgroup isomorphic to
C2 ×C2 ×C2. As we saw in the proof of Theorem 1, Z∗n ∼= C2 ×Cφ(n)/2
must be one of the following cases because the other cases possess a
subgroup isomorphic to C2 × C2 × C2.

Z∗
2k

(k > 2) ∼= C2 × C2k−2 ;
Z∗
4p

k1
1

∼= C2 × Cφ(pk11 )
;

Z∗
p
k1
1 p

k2
2

∼= C
φ(p

k1
1 )
× C

φ(p
k2
2 )

;

Z∗
2p

k1
1 p

k2
2

∼= C
φ(p

k1
1 )
× C

φ(p
k2
2 )
.

For the last two cases, note that the order of any element in Z∗n is

a factor of the least common multiple of φ(pk11 ) and φ(pk22 ), which is

equal to φ(n)

(φ(p
k1
1 ), φ(p

k2
2 ))

. Recall that (φ(pk11 ), φ(pk22 )) ≥ 2. This im-

plies that Z∗
p
k1
1 p

k2
2

and Z∗
2p

k1
1 p

k2
2

have a semi-primitive root only when

(φ(pk11 ), φ(pk22 )) = 2.

In Lemma 1, we saw that Z∗
2k

(k > 2) = {±3i (mod n) : i =

0, 1, · · · , 2k−2−1}. The following theorem shows that any Z∗n isomorphic
to C2 × Cφ(n)/2 has a similar representation.

Theorem 3. Suppose Z∗n ∼= C2 × Cφ(n)/2. Then there exists a semi-

primitive root h ∈ Z∗n so that Z∗n = {±hi (mod n) : i = 0, 1, ..., φ(n)/2−
1}.

Proof. If n = 2k (k > 2), it is already shown in Lemma 1. Let us

assume that n is equal to 4pk11 , pk11 p
k2
2 , or 2pk11 p

k2
2 .
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Let h be a semi-primitive root of Z∗n and
〈
h
〉

be the subgroup of Z∗n
generated by h. Then

〈
h
〉

has only one element of order 2, which is

hφ(n)/4.
If hφ(n)/4 6≡ −1 (mod n),

〈
h
〉
∩
〈
− 1
〉

= {1} and hence
〈
h
〉
×
〈
− 1
〉

is a desired representation for Z∗n.

If hφ(n)/4 ≡ −1 (mod n) and Z∗n =
〈
a
〉
×
〈
h
〉

for some a ∈ Z∗n of order

2, then we will claim that h̃ = ah is our desired semi-primitive root:

Clearly, the order of h̃ modulo n is equal to the least common multiple
of 2 and φ(n)/2, which is φ(n)/2. We only need to make sure that

〈
h̃
〉

does not contain −1. In order to show that −1 6∈
〈
h̃
〉
, write n = m1m2

so that both Z∗m1
and Z∗m2

have primitive roots and (m1,m2) = 1. For

an example, 2pk11 p
k2
2 =

(
2pk11

)(
pk22
)
. Then the following holds.

hφ(n)/4 ≡ −1 (mod n) ⇒

{ (
hφ(m1)/2

)φ(m2)/2 ≡ −1 (mod m1);(
hφ(m2)/2

)φ(m1)/2 ≡ −1 (mod m2)
(0.2)

Recall that Z∗m1
is a cyclic group and hφ(m1) ≡ 1 (mod m1) from the

Euler’s Theorem. Then we have that hφ(m1)/2 ≡ −1 or 1 (mod m1).
This leads us

(
hφ(m1)/2

)φ(m2)/2 ≡ −1 (mod m1) ⇒

{
hφ(m1)/2 ≡ −1 (mod m1);
φ(m2)/2 is an odd integer.

Similarly,

(
hφ(m2)/2

)φ(m1)/2 ≡ −1 (mod m2) ⇒

{
hφ(m2)/2 ≡ −1 (mod m2);
φ(m1)/2 is an odd integer.

Finally, hφ(n)/4 ≡ −1 (mod n) ⇒ φ(n)/4 is an odd integer.

With that in mind, let us now assume that −1 ∈
〈
h̃
〉

=
〈
ah
〉
. Since h̃

is also a semi-primitive root, h̃φ(n)/4 ≡ −1 (mod n). Meanwhile, putting

together the given facts that a2 ≡ 1 (mod n), hφ(n)/4 ≡ −1 (mod n), and

φ(n)/4 is an odd integer, we have h̃φ(n)/4 = (ah)φ(n)/4 ≡ −a (mod n)
. This gives that a ≡ 1 (mod n), contradicting that the order of a
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modulo n is 2. It completes the proof that h̃ = ah is our alternative
semi-primitive root for the case of −1 ∈

〈
h
〉

.

We note immediately that the preceding theorem has the following
corollary.

Corollary 1. Let Z∗n be a noncyclic group possessing a semi-primitive
root h. Then a is a quadratic residue, i.e. x2 ≡ a (mod n) for some
x ∈ Z∗n, if and only if a is equivalent to a power of h2 modulo n. Fur-
thermore, Z∗n has exactly φ(n)/4 incongruent quadratic residues.
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