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SEMI-PRIMITIVE ROOT MODULO n

Ki-Suk LEE, MIYEON KwoON, MIN KYUNG KANG AND GICHEOL
SHIN

Abstract. Consider a multiplicative group of integers modulo n,
denoted by Z;,. Any element a € Z;, is said to be a semi-primitive
root if the order of @ modulo n is ¢(n)/2, where ¢(n) is the Euler
phi-function. In this paper, we classify the multiplicative groups of
integers having semi-primitive roots and give interesting properties
of such groups.

Given a positive integer n, the integers between 1 and n which are
coprime to n form a group with multiplication modulo n as the operation
[4]; it is denoted by Z; and is called the multiplicative group of integers
modulo n. For any integer a coprime to n, Euler’s theorem states that
a®™ =1 mod n, where ¢(n) is the Euler phi-function [1], that is, the
number of elements in Z; and a is said to be a primitive root modulo n
if the order of @ modulo n is equal to ¢(n). It is well known [5] that Z
has a primitive root, equivalently, Z; is cyclic if and only if n is equal
to 1, 2, 4, p*, or 2p* where p* is a power of an odd prime number. This
leaves us questions about Z; that does not possess any primitive roots.

With saying that, the following theorem takes us the first step to
answer the questions on noncyclic multiplicative groups Z;,.

This lemma is well known [2]: we provides its proof for the reader’s
convenience.

*

Lemma 1. Z3,,

k > 2, is isomorphic to Cy x Cyk-2. Furthermore,
Zy = {43 (mod n) i =0,1,-+ 221},

Proof. According to the Euler’s theorem, the order of any odd integer
a modulo 2* must be a power of 2. We will show that the order of 3
modulo n is 272 by evaluating 32" modulo 2*.
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First, note that for a given integer m > 0, the Binomial theorem
assures us

(0.1) (2+1)%" +1=2¢, for some odd integer £,,.

By factoring, we get
2+1)2" -1 = (2+1D* +1) - (C+12+1)(2+ D) +1)(2+1) 1)
= 2€m,1) . (262) (22) (2), where /; is an odd integers
2m+2¢ where £ is an odd integer.

This implies that 3™ —1 = 0 (mod 2*) = m 42 > k. Therefore, the
order of 3 modulo 2 is 252
Furthermore, the subgroup <3> of Z3, generated by 3 does not include

—1: If =1 € (3), -1 = 32 (mod 2%), the only element of order 2 in

(3). This contradicts to (0.1). Therefore, Z3, = ( —1) x (3). O

Theorem 1. Let Z;, be the multiplicative group of integers modulo
n. If Z} does not have any primitive root, a?™/2 =1 mod n for any
integer a coprime to n.

Proof. Any integer n greater than 1 can be expressed 2%, plfl p§2 coophm
or 2";pr1 pSQ - opkm where pfi is a power of odd prime numbers.

By the preceding lemma, Zy = Ci, Zy2 = Co, and Zj;, (k > 2) =
Ca x Cyr—2. For the other cases, let us recall the Chinese Remainder
Theorem [3]:

Ly = Ly XLy X oo X LY,
P Pm
= O¢(p]f1)x'”xc¢(pf,?l) if k=0or1;
CQXC¢(p’f1)X"'XC¢(p’fnm) if k=2;
Co X Cyp—2 X C¢(p;1g1) X oo X C¢(p7;%m) if k> 2.

This implies that if Z* is not cyclic (equivalently n # 2, 4, p*, 2p¥),
then Z is the direct product of two or more cyclic subgroups of even
order, say S1,.52,---. In that case, the order of any a € Z; modulo n
is a factor of the least common multiple of |S;|, |S2|, --- that is equal
to W = %, for some integer k, where (a,b) is the greatest

common divisor of a and b. This completes the proof. O

This motivates the following definition.
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Definition 1. Let Z} be the multiplicative group of integers modulo
n. Any integer a is said to be be a semi-primitive root modulo n if the
order of a modulo n is equal to ¢(n)/2.

Clearly, any Z; possessing a primitive root a have a semi-primitive
root a? in Z*. If Z is a noncyclic group possessing a semi-primitive
root, the following holds.

Theorem 2. Let Z; be the multiplicative group of integers modulon
that does not possess any primitive root. Then Z} has a semi-primitive
root if and only if n is equal to 2 (k > 2), 4p’f1, p’flpl;Q, or 2plf1p§2,
where p1 and py are odd prime numbers satisfying (d)(PIfl), ¢(P§2)) =2

Proof. Suppose that Z; has a semi-primitive root h. Then there exits
an element a € Z, of order 2 such that Z} = (a) x (h) = C5 x Con) /25
where <a> and <h> are subgroups of Z;, generated by a and h, respec-
tively. Note that such group does not have a subgroup isomorphic to
Ca x Cy x Cy. As we saw in the proof of Theorem 1, Z} = C2 X Cy(y) /2
must be one of the following cases because the other cases possess a
subgroup isomorphic to Cy x Cy x Cs.

ok (k>2) =2 CyxCyo;
Zi = G x Gy
Z;'flp§2 = C¢>(plf1) X ch(p?);

gt 5 Gy X Cyiphays

For the last two cases, note that the order of any element in Z; is
a factor of the least common multiple of gb(plfl) and ¢(p§2), which is

n k k ..
equal to m. Recall that (¢(py'), ¢(py?)) > 2. This im-

plies that Z;klpkz and Z;p’“lp’@ have a semi-primitive root only when
1 2 1 2

(@(p1), B(p5?)) = 2. O

In Lemma 1, we saw that Z}, (k > 2) = {£3' (mod n) : i =
0,1,---,2Fk2— 1}. The following theorem shows that any Z? isomorphic
to Uy x Cy(p) 2 has a similar representation.

Theorem 3. Suppose Z;, = Cy X Cy(y)/2- Then there exists a semi-
primitive root h € Z? so that Z! = {+h® (mod n) :i=0,1,...,6(n)/2—
1}.

Proof. If n = 2% (k > 2), it is already shown in Lemma 1. Let us

assume that n is equal to 4p'f1, plfl pgz, or 2p’f1 p§2.
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Let h be a semi-primitive root of Z; and <h> be the subgroup of Z
generated by h. Then <h> has only one element of order 2, which is
ho(n)/4,

If h*()/4 2 —1 (mod n), (k) N ({ —1) = {1} and hence (h) x { — 1)
is a desired representation for Z.

If h9(/4 = —1 (mod n) and Z* = <a> < > for some a € Z;, of order

2, then we will claim that h = ah is our desired semi-primitive root:

Clearly, the order of h modulo n is equal to the least common multiple
of 2 and ¢(n)/2, which is ¢(n)/2. We only need to make sure that (h)

does not contain —1. In order to show that —1 ¢ <l~1>, write n = mimo
so that both Zy, and Zy,, have primitive roots and (my, mg) = 1. For

an example, 2p1 p2 = (2p’f1) (pé”). Then the following holds.

po(m)/2)¢(m2)/2 = 4 (mod my);

0.2) h*™/* = _1 (mod n) =
(0.2) ( ) (n#m2)/2) 202 = 1 (mod my)

Recall that Z7,, is a cyclic group and h?(m1) =1 (mod mq) from the

Euler’s Theorem. Then we have that h?(™1)/2 = —1 or 1 (mod my).
This leads us

$(mr)/2\6(m2)/2 _ ho(m1)/2 = _1 (mod my);
(n ) =—1(modm) = { #(m2)/2 is an odd integer.
Similarly,

$(ma)/2yb(m1)/2 _ _ ho(m2)/2 = _1 (mod my);
(n ) =—1 (modmy) = { ¢(m1)/2 is an odd integer.

Finally, h?(™/4 = —1 (mod n) = ¢(n)/4 is an odd integer.

With that in mind, let us now assume that —1 € <iL> = <ah>. Since h
is also a semi-primitive root, h?W/4 = —1 (mod n). Meanwhile, putting
together the given facts that a® = 1 (mod n), h?™/4 = —1 (mod n), and
$(n)/4 is an odd integer, we have h®?(M/4 = (qh)?(M/4 = —g (mod n)

This gives that ¢ = 1 (mod n), contradicting that the order of a
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modulo n is 2. It completes the proof that h = ah is our alternative
semi-primitive root for the case of —1 € <h> . O

We note immediately that the preceding theorem has the following
corollary.

Corollary 1. Let Z;, be a noncyclic group possessing a semi-primitive
root h. Then a is a quadratic residue, i.e. 2> = a (mod n) for some
x € Z%, if and only if a is equivalent to a power of h* modulo n. Fur-
thermore, 7!, has exactly ¢(n)/4 incongruent quadratic residues.
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