SEMI-PRIMITIVE ROOT MODULO n

Ki-Suk Lee, Miyeon Kwon, Min Kyung Kang and GiCheol Shin

Abstract

Consider a multiplicative group of integers modulo n, denoted by \mathbb{Z}_{n}^{*}. Any element $a \in \mathbb{Z}_{n}^{*}$ is said to be a semi-primitive root if the order of a modulo n is $\phi(n) / 2$, where $\phi(n)$ is the Euler phi-function. In this paper, we classify the multiplicative groups of integers having semi-primitive roots and give interesting properties of such groups.

Given a positive integer n, the integers between 1 and n which are coprime to n form a group with multiplication modulo n as the operation [4]; it is denoted by \mathbb{Z}_{n}^{*} and is called the multiplicative group of integers modulo n. For any integer a coprime to n, Euler's theorem states that $a^{\phi(n)} \equiv 1 \bmod n$, where $\phi(n)$ is the Euler phi-function [1], that is, the number of elements in \mathbb{Z}_{n}^{*} and a is said to be a primitive root modulo n if the order of a modulo n is equal to $\phi(n)$. It is well known [5] that \mathbb{Z}_{n}^{*} has a primitive root, equivalently, \mathbb{Z}_{n}^{*} is cyclic if and only if n is equal to $1,2,4, p^{k}$, or $2 p^{k}$ where p^{k} is a power of an odd prime number. This leaves us questions about \mathbb{Z}_{n}^{*} that does not possess any primitive roots.

With saying that, the following theorem takes us the first step to answer the questions on noncyclic multiplicative groups \mathbb{Z}_{n}^{*}.

This lemma is well known [2]: we provides its proof for the reader's convenience.

Lemma 1. $\mathbb{Z}_{2^{k}}^{*}, k>2$, is isomorphic to $C_{2} \times C_{2^{k-2}}$. Furthermore,

$$
\mathbb{Z}_{2^{k}}^{*}=\left\{ \pm 3^{i}(\bmod n): i=0,1, \cdots, 2^{k-2}-1\right\} .
$$

Proof. According to the Euler's theorem, the order of any odd integer a modulo 2^{k} must be a power of 2 . We will show that the order of 3 modulo n is 2^{k-2} by evaluating $3^{2^{m}}$ modulo 2^{k}.

[^0]First, note that for a given integer $m>0$, the Binomial theorem assures us

$$
\begin{equation*}
(2+1)^{2^{m}}+1=2 \ell_{m} \text { for some odd integer } \ell_{m} \tag{0.1}
\end{equation*}
$$

By factoring, we get

$$
\begin{aligned}
(2+1)^{2^{m}}-1 & =\left((2+1)^{2^{m-1}}+1\right) \cdots\left((2+1)^{2}+1\right)((2+1)+1)((2+1)-1) \\
& =\left(2 \ell_{m-1}\right) \cdots\left(2 \ell_{2}\right)\left(2^{2}\right)(2), \text { where } \ell_{i} \text { is an odd integers } \\
& =2^{m+2} \ell, \text { where } \ell \text { is an odd integer. }
\end{aligned}
$$

This implies that $3^{2^{m}}-1 \equiv 0\left(\bmod 2^{k}\right) \Rightarrow m+2 \geq k$. Therefore, the order of 3 modulo 2^{k} is 2^{k-2}.

Furthermore, the subgroup $\langle 3\rangle$ of $\mathbb{Z}_{2^{k}}^{*}$ generated by 3 does not include -1 : If $-1 \in\langle 3\rangle,-1 \equiv 3^{2^{k-3}}\left(\bmod 2^{k}\right)$, the only element of order 2 in $\langle 3\rangle$. This contradicts to (0.1). Therefore, $\mathbb{Z}_{2^{k}}^{*}=\langle-1\rangle \times\langle 3\rangle$.

Theorem 1. Let \mathbb{Z}_{n}^{*} be the multiplicative group of integers modulo n. If \mathbb{Z}_{n}^{*} does not have any primitive root, $a^{\phi(n) / 2} \equiv 1 \bmod n$ for any integer a coprime to n.

Proof. Any integer n greater than 1 can be expressed $2^{k}, p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{m}^{k_{m}}$, or $2^{k} p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{m}^{k_{m}}$, where $p_{i}^{k_{i}}$ is a power of odd prime numbers.

By the preceding lemma, $\mathbb{Z}_{2} \cong C_{1}, \mathbb{Z}_{2^{2}} \cong C_{2}$, and $\mathbb{Z}_{2^{k}}^{*}(k>2) \cong$ $C_{2} \times C_{2^{k-2}}$. For the other cases, let us recall the Chinese Remainder Theorem [3]:

$$
\begin{aligned}
\mathbb{Z}_{n}^{*} \cong & \mathbb{Z}_{2^{k}}^{*} \times \mathbb{Z}_{p_{1}^{k_{1}}}^{*} \times \cdots \times \mathbb{Z}_{p_{m}^{k_{m}}}^{*} & & \\
\cong & C_{\phi\left(p_{1}^{k_{1}}\right)} \times \cdots \times C_{\phi\left(p_{m}^{k_{m}}\right)} & & \text { if } k=0 \text { or } 1 \\
& C_{2} \times C_{\phi\left(p_{1}^{k_{1}}\right)} \times \cdots \times C_{\phi\left(p_{m}^{k_{m}}\right)} & & \text { if } k=2 \\
& \left.C_{2} \times C_{2^{k-2}} \times C_{\phi\left(p_{1}^{k_{1}}\right)} \times \cdots \times C_{\phi\left(p_{m}^{k_{m}}\right)}\right) & & \text { if } k>2
\end{aligned}
$$

This implies that if \mathbb{Z}_{n}^{*} is not cyclic (equivalently $n \neq 2,4, p^{k}, 2 p^{k}$), then \mathbb{Z}_{n}^{*} is the direct product of two or more cyclic subgroups of even order, say S_{1}, S_{2}, \cdots. In that case, the order of any $a \in \mathbb{Z}_{n}^{*}$ modulo n is a factor of the least common multiple of $\left|S_{1}\right|,\left|S_{2}\right|, \cdots$ that is equal to $\frac{\phi(n)}{\left(\left|S_{1}\right|,\left|S_{2}\right|, \cdots\right)}=\frac{\phi(n)}{2 k}$, for some integer k, where (a, b) is the greatest common divisor of a and b. This completes the proof.

This motivates the following definition.

Definition 1. Let \mathbb{Z}_{n}^{*} be the multiplicative group of integers modulo n. Any integer a is said to be be a semi-primitive root modulo n if the order of a modulo n is equal to $\phi(n) / 2$.

Clearly, any \mathbb{Z}_{n}^{*} possessing a primitive root a have a semi-primitive root a^{2} in \mathbb{Z}_{n}^{*}. If \mathbb{Z}_{n}^{*} is a noncyclic group possessing a semi-primitive root, the following holds.

Theorem 2. Let \mathbb{Z}_{n}^{*} be the multiplicative group of integers modulo n that does not possess any primitive root. Then \mathbb{Z}_{n}^{*} has a semi-primitive root if and only if n is equal to $2^{k}(k>2), 4 p_{1}^{k_{1}}, p_{1}^{k_{1}} p_{2}^{k_{2}}$, or $2 p_{1}^{k_{1}} p_{2}^{k_{2}}$, where p_{1} and p_{2} are odd prime numbers satisfying $\left(\phi\left(p_{1}^{k_{1}}\right), \phi\left(p_{2}^{k_{2}}\right)\right)=2$.

Proof. Suppose that \mathbb{Z}_{n}^{*} has a semi-primitive root h. Then there exits an element $a \in \mathbb{Z}_{n}^{*}$ of order 2 such that $\mathbb{Z}_{n}^{*}=\langle a\rangle \times\langle h\rangle \cong C_{2} \times C_{\phi(n) / 2}$, where $\langle a\rangle$ and $\langle h\rangle$ are subgroups of \mathbb{Z}_{n}^{*} generated by a and h, respectively. Note that such group does not have a subgroup isomorphic to $C_{2} \times C_{2} \times C_{2}$. As we saw in the proof of Theorem $1, \mathbb{Z}_{n}^{*} \cong C_{2} \times C_{\phi(n) / 2}$ must be one of the following cases because the other cases possess a subgroup isomorphic to $C_{2} \times C_{2} \times C_{2}$.

$$
\begin{array}{ll}
\mathbb{Z}_{2^{k}}^{*}(k>2) & \cong C_{2} \times C_{2^{k-2}} ; \\
\mathbb{Z}_{4 p_{1}^{*}}^{*} & \cong C_{2} \times C_{\phi\left(p_{1}^{k_{1}}\right)} \\
\mathbb{Z}_{p_{1}^{k_{1}} p_{2}^{k_{2}}} & \cong C_{\phi\left(p_{1}^{k_{1}}\right)} \times C_{\phi\left(p_{2}^{k_{2}}\right)} ; \\
\mathbb{Z}_{2 p_{1}^{*}}^{*} ;{p_{2}^{k_{2}}}^{k_{2}^{k_{2}}} & \cong C_{\phi\left(p_{1}^{k_{1}}\right)} \times C_{\phi\left(p_{2}^{k_{2}}\right)} .
\end{array}
$$

For the last two cases, note that the order of any element in \mathbb{Z}_{n}^{*} is a factor of the least common multiple of $\phi\left(p_{1}^{k_{1}}\right)$ and $\phi\left(p_{2}^{k_{2}}\right)$, which is equal to $\frac{\phi(n)}{\left(\phi\left(p_{1}^{k_{1}}\right), \phi\left(p_{2}^{k_{2}}\right)\right)}$. Recall that $\left(\phi\left(p_{1}^{k_{1}}\right), \phi\left(p_{2}^{k_{2}}\right)\right) \geq 2$. This implies that $\mathbb{Z}_{p_{1}^{k_{1} p_{2} k_{2}}}^{*}$ and $\mathbb{Z}_{2 p_{1}^{k_{1} p_{2}^{k_{2}}}}^{*}$ have a semi-primitive root only when $\left(\phi\left(p_{1}^{k_{1}}\right), \phi\left(p_{2}^{k_{2}}\right)\right)=2$.

In Lemma 1 , we saw that $\mathbb{Z}_{2^{k}}^{*}(k>2)=\left\{ \pm 3^{i}(\bmod n): i=\right.$ $\left.0,1, \cdots, 2^{k-2}-1\right\}$. The following theorem shows that any \mathbb{Z}_{n}^{*} isomorphic to $C_{2} \times C_{\phi(n) / 2}$ has a similar representation.

Theorem 3. Suppose $\mathbb{Z}_{n}^{*} \cong C_{2} \times C_{\phi(n) / 2}$. Then there exists a semiprimitive root $h \in \mathbb{Z}_{n}^{*}$ so that $\mathbb{Z}_{n}^{*}=\left\{ \pm h^{i}(\bmod n): i=0,1, \ldots, \phi(n) / 2-\right.$ $1\}$.

Proof. If $n=2^{k}(k>2)$, it is already shown in Lemma 1. Let us assume that n is equal to $4 p_{1}^{k_{1}}, p_{1}^{k_{1}} p_{2}^{k_{2}}$, or $2 p_{1}^{k_{1}} p_{2}^{k_{2}}$.

Let h be a semi-primitive root of \mathbb{Z}_{n}^{*} and $\langle h\rangle$ be the subgroup of \mathbb{Z}_{n}^{*} generated by h. Then $\langle h\rangle$ has only one element of order 2, which is $h^{\phi(n) / 4}$.

If $h^{\phi(n) / 4} \not \equiv-1(\bmod n),\langle h\rangle \cap\langle-1\rangle=\{1\}$ and hence $\langle h\rangle \times\langle-1\rangle$ is a desired representation for \mathbb{Z}_{n}^{*}.

If $h^{\phi(n) / 4} \equiv-1(\bmod n)$ and $\mathbb{Z}_{n}^{*}=\langle a\rangle \times\langle h\rangle$ for some $a \in \mathbb{Z}_{n}^{*}$ of order 2 , then we will claim that $\tilde{h}=a h$ is our desired semi-primitive root:

Clearly, the order of \tilde{h} modulo n is equal to the least common multiple of 2 and $\phi(n) / 2$, which is $\phi(n) / 2$. We only need to make sure that $\langle\tilde{h}\rangle$ does not contain -1 . In order to show that $-1 \notin\langle\tilde{h}\rangle$, write $n=m_{1} m_{2}$ so that both $\mathbb{Z}_{m_{1}}^{*}$ and $\mathbb{Z}_{m_{2}}^{*}$ have primitive roots and $\left(m_{1}, m_{2}\right)=1$. For an example, $2 p_{1}^{k_{1}} p_{2}^{k_{2}}=\left(2 p_{1}^{k_{1}}\right)\left(p_{2}^{k_{2}}\right)$. Then the following holds.
$(0.2) h^{\phi(n) / 4} \equiv-1(\bmod n) \Rightarrow\left\{\begin{array}{l}\left(h^{\phi\left(m_{1}\right) / 2}\right)^{\phi\left(m_{2}\right) / 2} \equiv-1\left(\bmod m_{1}\right) ; \\ \left(h^{\phi\left(m_{2}\right) / 2}\right)^{\phi\left(m_{1}\right) / 2} \equiv-1\left(\bmod m_{2}\right)\end{array}\right.$

Recall that $\mathbb{Z}_{m_{1}}^{*}$ is a cyclic group and $h^{\phi\left(m_{1}\right)} \equiv 1\left(\bmod m_{1}\right)$ from the Euler's Theorem. Then we have that $h^{\phi\left(m_{1}\right) / 2} \equiv-1$ or $1\left(\bmod m_{1}\right)$. This leads us

$$
\left(h^{\phi\left(m_{1}\right) / 2}\right)^{\phi\left(m_{2}\right) / 2} \equiv-1\left(\bmod m_{1}\right) \Rightarrow\left\{\begin{array}{l}
h^{\phi\left(m_{1}\right) / 2} \equiv-1\left(\bmod m_{1}\right) ; \\
\phi\left(m_{2}\right) / 2 \text { is an odd integer. }
\end{array}\right.
$$

Similarly,

$$
\left(h^{\phi\left(m_{2}\right) / 2}\right)^{\phi\left(m_{1}\right) / 2} \equiv-1\left(\bmod m_{2}\right) \Rightarrow\left\{\begin{array}{l}
h^{\phi\left(m_{2}\right) / 2} \equiv-1\left(\bmod m_{2}\right) ; \\
\phi\left(m_{1}\right) / 2 \text { is an odd integer. }
\end{array}\right.
$$

Finally, $h^{\phi(n) / 4} \equiv-1(\bmod n) \Rightarrow \phi(n) / 4$ is an odd integer.
With that in mind, let us now assume that $-1 \in\langle\tilde{h}\rangle=\langle a h\rangle$. Since \tilde{h} is also a semi-primitive root, $\tilde{h}^{\phi(n) / 4} \equiv-1(\bmod n)$. Meanwhile, putting together the given facts that $a^{2} \equiv 1(\bmod n), h^{\phi(n) / 4} \equiv-1(\bmod n)$, and $\phi(n) / 4$ is an odd integer, we have $\tilde{h}^{\phi(n) / 4}=(a h)^{\phi(n) / 4} \equiv-a(\bmod n)$ - This gives that $a \equiv 1(\bmod n)$, contradicting that the order of a
modulo n is 2 . It completes the proof that $\tilde{h}=a h$ is our alternative semi-primitive root for the case of $-1 \in\langle h\rangle$.

We note immediately that the preceding theorem has the following corollary.

Corollary 1. Let \mathbb{Z}_{n}^{*} be a noncyclic group possessing a semi-primitive root h. Then a is a quadratic residue, i.e. $x^{2} \equiv a(\bmod n)$ for some $x \in \mathbb{Z}_{n}^{*}$, if and only if a is equivalent to a power of h^{2} modulo n. Furthermore, \mathbb{Z}_{n}^{*} has exactly $\phi(n) / 4$ incongruent quadratic residues.

References

[1] M. Abramowitz, I. A. Stegunl, Handbook of Mathematical Functions, Dover Publication, New York, 1964.
[2] C. F. Gauss; A. A. Clarke (translator into English), Disquisitiones Arithemeticae, Springer, New York, 1986.
[3] H. Riesel, Prime Numbers and Computer Methods for Factorization, Birkhäuser, Boston, 1994.
[4] H. E. Rose, A Course in Number Theory, Oxford University Press Inc., New York, 1994
[5] J. K. Strayer, Elementary Number Theory, Waveland Press, Inc., 2002.

Ki-Suk Lee
Department of Mathematics Education, Korea National University of Education,
Chungwongun, Chungbuk 363-791, Korea.
E-mail: kslee@knue.ac.kr

Miyeon Kwon

Department of Mathematics, University of Wisconsin-Platteville, Platteville, WI 53818, USA.
E-mail: kwonmi@uwplatt.edu

Min Kyung Kang
Department of Mathematics Education, Korea National University of Education,
Chungwongun, Chungbuk 363-791, Korea.
E-mail: mksgod@nate.com

GiCheol Shin
Department of Mathematics Education, Korea National University of Education,
Chungwongun, Chungbuk 363-791, Korea.
E-mail: math06@blue.knue.ac.kr

[^0]: Received March 10, 2011. Accepted March 25, 2011.
 2000 Mathematics Subject Classification. 11A07, 11A05.
 Key words and phrases. Multiplicative group of integers modulo n, primitive roots, semi-primitive roots.

