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Abstract. Let Zn be the ring of integers modulo n and Γ(Zn) the zero-divisor graph

of Zn. In this paper, we study some properties of Γ(Zn). More precisely, we completely

characterize the diameter and the girth of Γ(Zn). We also calculate the chromatic number

of Γ(Zn).

1. Introduction

1.1. Preliminaries

In this subsection, we review some concepts from basic graph theory. Let G
be a (undirected) graph. Recall that G is connected if there is a path between any
two distinct vertices of G. The graph G is complete if any two distinct vertices
are adjacent. The complete graph with n vertices is denoted by Kn. The graph
G is a complete bipartite graph if G can be partitioned into two disjoint nonempty
vertex sets A and B such that two distinct vertices are adjacent if and only if they
are in distinct vertex sets. If one of the vertex sets is a singleton set, then we call
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G a star. We denote the complete bipartite graph by Km,n, where m and n are
the cardinal numbers of A and B, respectively. For vertices a and b in G, d(a, b)
denotes the length of the shortest path from a to b. If there is no such path, then
d(a, b) is defined to be ∞; and d(a, a) is defined to be zero. The diameter of G,
denoted by diam(G), is the supremum of {d(a, b) | a and b are vertices of G}. The
girth of G, denoted by g(G), is defined as the length of the shortest cycle in G.
If G contains no cycles, then g(G) is defined to be ∞. A subgraph H of G is an
induced subgraph of G if two vertices of H are adjacent in H if and only if they
are adjacent in G. The chromatic number of G is the minimum number of colors
needed to color the vertices of G so that no two adjacent vertices share the same
color, and is denoted by χ(G). A clique C in G is a subset of the vertex set of G
such that the induced subgraph of G by C is a complete graph. The clique number
of G, denoted by cl(G), is the greatest integer n ≥ 1 such that Kn ⊆ G. If Kn ⊆ G
for all integers n ≥ 1, then cl(G) is defined to be ∞. A maximal clique in G is a
clique that cannot be extended by including one more adjacent vertex. It is easy to
see that χ(G) ≥ cl(G).

1.2. The Zero-divisor Graph of a Commutative Ring

Let R be a commutative ring with identity and Z(R) the set of nonzero zero-
divisors of R. The zero-divisor graph of R, denoted by Γ(R), is the simple graph
with vertex set Z(R), and for distinct a, b ∈ Z(R), a and b are adjacent if and only
if ab = 0. Clearly, Γ(R) is the null graph if and only if R is an integral domain.

In [4], Beck first introduced the concept of the zero-divisor graphs of commu-
tative rings and in [3], Anderson and Nazeer continued the study. In their papers,
all elements of R are vertices of the graph and they were mainly interested in
colorings. In [2], Anderson and Livingston gave the present definition of Γ(R) in
order to emphasize the study of the interplay between graph-theoretic properties of
Γ(R) and ring-theoretic properties of R. It was shown that Γ(R) is connected with
diam(Γ(R)) ≤ 3 [2, Theorem 2.3]; and g(Γ(R)) ≤ 4 [5, (1.4)].

For more on the zero-divisor graph of a commutative ring, the readers can refer
to a survey article [1].

Let Zn be the ring of integers modulo n. The purpose of this paper is to study
some properties of the zero-divisor graph of Zn. If n is a prime number, then Zn has
no zero-divisors; so Γ(Zn) is the null graph. Hence in this paper, we only consider
the case that n is a composite. In Section 2, we completely characterize the diameter
and the girth of Γ(Zn). In Section 3, we calculate the chromatic number of Γ(Zn).
Note that all figures are drawn via website http://graphonline.ru/en/.

2. The Diameter and the Girth of Γ(Zn)

Our first result in this section is the complete characterization of the diameter
of Γ(Zn).

Theorem 2.1. The following statements hold.

(1) diam(Γ(Zn)) = 0 if and only if n = 4.
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(2) diam(Γ(Zn)) = 1 if and only if n = p2 for some prime p ≥ 3.

(3) diam(Γ(Zn)) = 2 if and only if n = pr for some prime p and some integer
r ≥ 3, or n = pq for some distinct primes p and q.

(4) diam(Γ(Zn)) = 3 if and only if n = pqr for some distinct primes p, q and
some integer r ≥ 2.

Proof. (1) If n = 4, then Z(Z4) = {2}; so diam(Γ(Z4)) = 0.
(2) If n = p2 for some prime p ≥ 3, then Z(Zp2) = {p, 2p, . . . , (p− 1)p}; so the

product of any two elements of Z(Zp2) is zero. Hence Γ(Zp2) is the complete graph
Kp−1. Thus diam(Γ(Zp2)) = 1.

(3) If n = pr for some prime p and some integer r ≥ 3, then Z(Zpr ) =
{p, 2p, . . . , (pr−1 − 1)p}; so apr−1 = 0 for all a ∈ Z(Zpr ). Hence diam(Γ(Zpr )) ≤ 2.
Note that p((pr−1 − 1)p) 6= 0. Thus diam(Γ(Zpr )) = 2.

If n = pq for some distinct primes p and q, then Z(Zpq) = {p, 2p, . . . , (q −
1)p, q, 2q, . . . , (p− 1)q}; so (ip)(jq) = 0 for all i = 1, . . . , q − 1 and j = 1, . . . , p− 1.
Note that for any a, b ∈ {p, 2p, . . . , (q − 1)p} and c, d ∈ {q, 2q, . . . , (p − 1)q}, ab 6=
0 and cd 6= 0. Hence Γ(Zpq) is the complete bipartite graph Kp−1,q−1. Thus
diam(Γ(Zpq)) = 2.

(4) Suppose that n = pqr for some distinct primes p, q and some integer r ≥ 2.
Then p, q ∈ Z(Zpqr) with pq 6= 0; so diam(Γ(Zpqr)) ≥ 2. If there exists an element
a ∈ Z(Zpqr) such that p ∼ a ∼ q is a path, then a is a nonzero multiple of pr and qr;
so a is nonzero a multiple of pqr. This is a contradiction. Hence diam(Γ(Zpqr)) ≥ 3.
Thus diam(Γ(Zpqr)) = 3 [2, Theorem 2.3]. 2

Figure 1: The diameters of some zero-divisor graphs

We next study the girth of Γ(Zn).

Lemma 2.2. If g(Γ(Zn)) = 3, then g(Γ(Zmn)) = 3 for all integers m ≥ 1.

Proof. Note that if a ∼ b ∼ c ∼ a is a cycle in Γ(Zn), then am ∼ bm ∼ cm ∼ am is
a cycle in Γ(Zmn). Thus g(Γ(Zmn)) = 3. 2

The next example shows that Lemma 2.2 cannot be extended to the case of
girth 4.
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Example 2.3.

(1) Note that g(Γ(Z12)) = 4. In fact, 3 ∼ 4 ∼ 6 ∼ 8 ∼ 3 is a cycle of length 4 in
Γ(Z12). However, g(Γ(Z24)) = 3 because 6 ∼ 8 ∼ 12 ∼ 6 is a cycle of length
3 in Γ(Z24).

(2) In general, g(Γ(Z4q)) = 4 but g(Γ(Z2rq)) = 3 for all primes q ≥ 3 and all
integers r ≥ 3. (See Proposition 2.6.)

Proposition 2.4. If t ≥ 3 is an integer and p1, . . . , pt are distinct primes, then
g(Γ(Zpr11 p

r2
2 ···prtt )) = 3 for all positive integers r1, . . . , rt.

Proof. If t = 3, then pr11 p
r2
2 ∼ pr22 p

r3
3 ∼ pr11 p

r3
3 ∼ pr11 p

r2
2 is a cycle in Γ(Zpr11 p

r2
2 p

r3
3

);

so g(Γ(Zpr11 p
r2
2 p

r3
3

)) = 3.
If t > 3, then the result follows directly from Lemma 2.2. 2

Proposition 2.5. Let p be a prime and r ≥ 2 an integer. Then the following
assertions hold.

(1) g(Γ(Zpr )) =∞ if and only if pr = 4, 8 or 9.

(2) g(Γ(Zpr )) = 3 if and only if each of the following conditions holds.

(a) p = 2 and r ≥ 4.

(b) p = 3 and r ≥ 3.

(c) p ≥ 5 and r ≥ 2.

Proof. (1) It is obvious that Γ(Z4), Γ(Z8) and Γ(Z9) have no cycles. Thus the
equivalence follows.

(2) If p = 2 and r ≥ 4, then 2r−1, 2r−2, 3 · 2r−2 ∈ Z(Z2r ). Since the product of
any two of them is zero, 2r−1 ∼ 2r−2 ∼ 3 · 2r−2 ∼ 2r−1 is a cycle in Γ(Z2r ). Thus
g(Γ(Z2r )) = 3.

If p = 3 and r ≥ 3, then 3r−1, 2 · 3r−1, 3r−2 ∈ Z(Z3r ). Since the product of
any two of them is zero, 3r−1 ∼ 2 · 3r−1 ∼ 3r−2 ∼ 3r−1 is a cycle in Γ(Z3r ). Thus
g(Γ(Z3r )) = 3.

If p ≥ 5 and r ≥ 2, then pr−1, 2pr−1, 3pr−1 ∈ Z(Zpr ). Since the product of
any two of them is zero, pr−1 ∼ 2pr−1 ∼ 3pr−1 ∼ pr−1 is a cycle in Γ(Zpr ). Thus
g(Γ(Zpr )) = 3. 2

Proposition 2.6. Let n be a positive integer which has only two distinct prime
divisors. Then the following assertions hold.

(1) g(Γ(Zn)) =∞ if and only if n = 2q for some prime q ≥ 3.

(2) g(Γ(Zn)) = 3 if and only if one of the following holds.

(a) n = 2rqs for some prime q ≥ 3 and some integers r ≥ 1 and s ≥ 2.

(b) n = 2rq for some prime q ≥ 3 and some integer r ≥ 3.
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(c) n = 3rqs for some prime q ≥ 5 and some integers r ≥ 1 and s ≥ 2.

(d) n = 3rq for some prime q ≥ 5 and some integer r ≥ 2.

(e) n = prqs for some primes q > p ≥ 5 and some integers r, s ≥ 1 except
for r = s = 1.

(3) g(Γ(Zn)) = 4 if and only if n = pq for some distinct primes p, q ≥ 3, or
n = 4q for some prime q ≥ 3.

Proof. (1) If n = 2q for some prime q ≥ 3, then Γ(Z2q) is a star graph K1,q−1 by
the proof of Theorem 2.1(3). Hence Γ(Z2q) has no cycles, and thus g(Γ(Z2q)) =∞.

(2) Let p and q be the only distinct prime divisors of n. Without loss of gener-
ality, we may assume that p < q.

Cases (a) and (b). p = 2. In this case, q ∼ 2q ∼ 4q ∼ q is a cycle of length 3 in
Γ(Z2q2); so g(Γ(Z2q2)) = 3. Hence by Lemma 2.2, g(Γ(Z2rqs)) = 3 for all integers
r ≥ 1 and s ≥ 2. Also, 4 ∼ 2q ∼ 4q ∼ 4 is a cycle of length 3 in Γ(Z8q); so
g(Γ(Z8q)) = 3. Hence by Lemma 2.2, g(Γ(Z2rq)) = 3 for all integers r ≥ 3.

Cases (c) and (d). p = 3. In this case, q ∼ 3q ∼ 6q ∼ q is a cycle of length 3 in
Γ(Z3q2); so g(Γ(Z3q2)) = 3. Hence by Lemma 2.2, g(Γ(Z3rqs)) = 3 for all integers
r ≥ 1 and s ≥ 2. Also, 3 ∼ 3q ∼ 6q ∼ 3 is a cycle of length 3 in Γ(Z9q); so
g(Γ(Z9q)) = 3. Hence by Lemma 2.2, g(Γ(Z3rq)) = 3 for all integers r ≥ 2.

Case (e). p ≥ 5. In this case, q ≥ 7; so by Proposition 2.5(2), g(Γ(Zpr )) = 3 =
g(Γ(Zqs)) for all integers r, s ≥ 2. Hence by Lemma 2.2, g(Γ(Zprqs)) = 3 for all
integers r, s ≥ 1 except for r = s = 1.

(3) If n = pq for some distinct primes p, q ≥ 3, then Γ(Zpq) is the complete
bipartite graph Kp−1,q−1 by the proof of Theorem 2.1(3). Hence there does not
exist a cycle of odd length. Note that p ∼ 2q ∼ 2p ∼ q ∼ p is a cycle of length 4.
Thus g(Γ(Zpq)) = 4.

Let n = 4q for some prime q ≥ 3, and suppose to the contrary that there exists
a cycle a ∼ b ∼ c ∼ a in Γ(Z4q). Since ab, bc and ca are divisible by 4q, q divides
at least two of a, b and c. Without loss of generality, we may assume that q divides
a and b. If 2 divides a, then a = 2q. Since ab is divisible by 4q, b is divisible by
2; so b = 2q. This is absurd. If 2 does not divide a, then a = q or a = 3q. Since
4q divides ab, b is divisible by 4; so b is a multiple of 4q. This is a contradiction.
Hence there do not exist cycles of length 3 in Γ(Z4q). Note that q ∼ 4 ∼ 2q ∼ 8 ∼ q
is a cycle of length 4. Thus g(Γ(Z4q)) = 4. 2

In the next remark, we construct a cycle of length 3 in Γ(Zn) in each case of
Proposition 2.6(2).

Remark 2.7.

(1) Let n = 2rqs for some prime q ≥ 3 and some integers r ≥ 1 and s ≥ 2. Then
2rqs−1 ∼ 2r+1qs−1 ∼ 2r−1qs ∼ 2rqs−1 is a cycle of length 3 in Γ(Z2rqs).

(2) Let n = 2rq for some prime q ≥ 3 and some integer r ≥ 3. Then 2r ∼ 2q ∼
2r−1q ∼ 2r is a cycle of length 3 in Γ(Z2rq).
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(3) Let n = 3rqs for some prime q ≥ 5 and some integers r ≥ 1 and s ≥ 2. Then
3r−1qs ∼ 3rqs−1 ∼ 2 · 3rqs−1 ∼ 3r−1qs is a cycle of length 3 in Γ(Z3rqs).

(4) Let n = 3rq for some prime q ≥ 5 and some integer r ≥ 2. Then 3r ∼ 3r−1q ∼
2 · 3r−1q ∼ 3r is a cycle of length 3 in Γ(Z3rq).

(5) Let n = prqs for some primes q > p ≥ 5 and some integers r, s ≥ 1 except
for r = s = 1. If r 6= 1 and s 6= 1, then prqs−1 ∼ pr−1qs ∼ 2pr−1qs ∼ prqs−1

and prqs−1 ∼ 2prqs−1 ∼ 3prqs−1 ∼ prqs−1 are cycles of length 3 in Γ(Zprqs),
respectively.

By Propositions 2.4, 2.5, and 2.6, we obtain

Theorem 2.8. The following statements hold.

(1) g(Γ(Zn)) =∞ if and only if each of the following conditions holds.

(a) n = 4, 8, 9.

(b) n = 2q for some prime q ≥ 3.

(2) g(Γ(Zn)) = 4 if and only if each of the following conditions holds.

(a) n = pq for some distinct primes p, q ≥ 3.

(b) n = 4q for some prime q ≥ 3.

(3) g(Γ(Zn)) = 3 in all other cases.

Figure 2: The girth of some zero-divisor graphs

3. The Chromatic Number of Γ(Zn)

In this section, we calculate the chromatic number of Γ(Zn). Clearly, if there
exists a clique in a graph, then the chromatic number of the graph is greater than
or equal to the size of the clique; so our method to find the chromatic number of
Γ(Zn) is based on the following three steps:

Step 1. Find a maximal clique C in Γ(Zn) and color vertices in C.
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Step 2. Color vertices in Z(Zn) \ C by colors used in Step 1.

Step 3. Confirm that there are no adjacent vertices having the same color.

Lemma 3.1. If r ≥ 2 is an integer, n = p1 · · · pr for distinct primes p1, . . . , pr,
and C = { npi | i = 1, . . . , r}, then C is a maximal clique of Γ(Zn).

Proof. Note that the product of any two distinct members of C is a multiple of n;
so C is a clique. Suppose that there exists an element a ∈ Z(Zn) \ C such that ca
is a multiple of n for all c ∈ C. Then for all i = 1, . . . , r, pi divides a; so n divides
a. This is a contradiction. Thus C is a maximal clique of Γ(Zn). 2

Theorem 3.2. If r ≥ 2 is an integer and n = p1 · · · pr for distinct primes p1, . . . , pr,
then χ(Γ(Zn)) = r.

Proof. Let C = { npi | i = 1, . . . , r}. Then by Lemma 3.1, C is a maximal clique of

Γ(Zn); so the chromatic number of the induced subgraph of Γ(Zn) induced by C is
r. For each i = 1, . . . , r, let i be the color of n

pi
. Clearly, Z(Zn) \ C is nonempty.

For each a ∈ Z(Zn) \ C, let Sa = {c ∈ C | a and c are not adjacent}. Note that by
Lemma 3.1, C is a maximal clique; so Sa is a nonempty set. Hence we can find the
smallest integer k ∈ {1, . . . , r} such that a and n

pk
are not adjacent. In this case,

we color a with k.

To complete the proof, we need to check that any two elements in Z(Zn) with
the same color cannot be adjacent. Let a and b be distinct elements in Z(Zn) with
the same color k. Since C is a clique, a and b cannot belong to C at the same time.
Suppose that a ∈ C and b ∈ Z(Zn) \ C. Then a = n

pk
; so by the coloring of b, a

and b are not adjacent. Suppose that a, b ∈ Z(Zn) \ C. Then n
pk
a and n

pk
b are not

divisible by n; so neither a nor b is divisible by pk. Therefore ab is not divisible by
n, and hence a cannot be adjacent to b. Thus χ(Γ(Zn)) = r. 2

Example 3.3. Consider Γ(Z15). Let C = {3, 5}. Then by Theorem 3.2, we color
5 and 3 with 1 and 2, respectively. Let R = {6, 9, 12} and let v ∈ R. Then v is not
adjacent to 3; so we color v with 2. Note that 10 is not adjacent to 5; so we color
5 with 1.

For the detail, see Figure 3. Note that in Figure 3, 1 and 2 are represented by
blue and red, respectively.

Figure 3: The coloring of Γ(Z15)
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Lemma 3.4. Let n = p2a11 · · · p2arr for distinct primes p1, . . . , pr and positive in-
tegers a1, . . . , ar, and let C = {k

√
n | k = 1, . . . ,

√
n − 1}. Then C is a clique of

Γ(Zn).

Proof. Note that the product of any two distinct elements of C is a multiple of n.
Thus C is a clique. 2

Theorem 3.5. Let n = p2a11 · · · p2arr for distinct primes p1, . . . , pr and positive
integers a1, . . . , ar. Then χ(Γ(Zn)) =

√
n− 1.

Proof. Let C = {k
√
n | k = 1, . . . ,

√
n − 1}. Then by Lemma 3.4, C is a clique of

Γ(Zn) with
√
n− 1 elements. For each k ∈ {1, . . . ,

√
n− 1}, let k̂ denote the color

of k
√
n.

Case 1. n = p21. In this case, Γ(Zn) is a complete graph by Theorem 2.1. Hence
Z(Zn) = C. Thus χ(Γ(Zn)) =

√
n− 1.

Case 2. n 6= p21. In this case, Γ(Zn) is not a complete graph by Theorem 2.1; so
Z(Zn) \ C 6= ∅. Let v ∈ Z(Zn) \ C. Then there exists an element m ∈ {1, . . . , r}
such that pamm does not divide v. Take the positive integer s ≤ am such that ps−1

m

divides v but psm does not divide v. Then v((
√
n/psm)

√
n) is not a multiple of n; so

v and (
√
n/psm)

√
n are not adjacent. We color v with

√̂
n/psm.

Now, it remains to check that any two vertices with the same color cannot be
adjacent. Let v1 and v2 be distinct elements of Z(Zn) which have the same color.
Since C is a clique, v1 and v2 cannot both belong to C. Suppose that v1 ∈ C

and v2 ∈ Z(Zn) \ C. Let
√̂
n/psm be the color of v2 for some m ∈ {1, . . . , r} and

s ∈ {1, . . . , am}. Then v2 is not divisible by psm by the coloring of v2. Since v1 ∈ C,
v1 = (

√
n/psm)

√
n. Therefore p2amm does not divide v1v2. Hence v1 is not adjacent

to v2. Suppose that v1, v2 ∈ Z(Zn) \C, and let
√̂
n/psm be the color of v1 and v2 for

some m ∈ {1, . . . , r} and s ∈ {1, . . . , am}. Then by the coloring of v1 and v2, psm
divides neither v1 nor v2; so p2sm does not divide v1v2. Since s ≤ am, p2amm does not
divide v1v2. Hence v1v2 is not a multiple of n, which means that v1 and v2 are not
adjacent.

In either case, Γ(Zn) is (
√
n−1)-colorable. Note that by Lemma 3.4, χ(Γ(Zn)) ≥√

n− 1. Thus χ(Γ(Zn)) =
√
n− 1. 2

Example 3.6. Consider Γ(Z36). Let C = {6, 12, 18, 24, 30}. Then by The-
orem 3.5, we color 6, 12, 18, 24 and 30 with 1̂, 2̂, 3̂, 4̂ and 5̂, respectively. Let
R = {2, 4, 8, 10, 14, 16, 20, 22, 26, 28, 32, 34} and let v ∈ R. Then v is not divisi-
ble by 3; so we color v with 2̂. Let B = {3, 9, 15, 21, 27, 33} and let v ∈ B. Then v
is not divisible by 2; so we color v with 3̂.

For the detail, see Figure 4. Note that in Figure 4, 1̂, 2̂, 3̂, 4̂ and 5̂ are represented
by green, red, blue, pink and brown, respectively.
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Figure 4: The coloring of Γ(Z36)

Lemma 3.7. Let p1, . . . , pr, q1, . . . , qs be distinct primes, a1, . . . , ar, b1, . . . , bs
nonnegative integers, not all zero, and let n = p2a11 · · · p2arr q2b1+1

1 · · · q2bs+1
s . If

C1 = {kpa11 · · · parr q
b1+1
1 · · · qbs+1

s | k = 1, . . . , pa11 · · · parr q
b1
1 · · · qbss − 1} and C2 =

{pa11 · · · parr q
b1+1
1 · · · qbs+1

s /qi | i = 1, . . . , s}, then C1 ∪ C2 is a maximal clique of
Γ(Zn).

Proof. We first note that C1 ∩ C2 = ∅. Let C = C1 ∪ C2. Then for any distinct
elements α, β ∈ C, αβ is a multiple of n; so C is a clique. Suppose that C is not a
maximal clique. Then there exists an element m ∈ Z(Zn) \C such that mc = 0 for

all c ∈ C. Therefore m is a multiple of pa11 · · · parr q
b1
1 · · · q

bi−1

i−1 q
bi+1
i q

bi+1

i+1 · · · qbss for all

i = 1, . . . , s. Hence m is a multiple of pa11 · · · parr q
b1+1
1 · · · qbs+1

s , which implies that
m ∈ C1. This contradicts the choice of m. Thus C is a maximal clique of Γ(Zn).
2

Theorem 3.8. Let p1, . . . , pr, q1, . . . , qs be distinct primes and a1, . . . , ar, b1, . . . , bs
nonnegative integers, not all zero. If n = p2a11 · · · p2arr q2b1+1

1 · · · q2bs+1
s , then

χ(Γ(Zn)) = pa11 · · · parr q
b1
1 · · · qbss − 1 + s.

Proof. Let x = pa11 · · · parr q
b1
1 · · · qbss and y = pa11 · · · parr q

b1+1
1 · · · qbs+1

s . Then n = xy.
Let C1 = {ky | k = 1, . . . , x− 1}, C2 = {y/qi | i = 1, . . . , s}, and C = C1 ∪C2. Then

by Lemma 3.7, C is a maximal clique of Γ(Zn). For each k = 1, . . . , x− 1, let k̂ be
the color of ky and for each i = 1, . . . , s, let i be the color of y/qi. Note that by
Theorem 2.1, Γ(Zn) is not a complete graph. Let v ∈ Z(Zn) \ C.

Case 1. There exists an element c ∈ C1 which is not adjacent to v. In this case,
v is not divisible by x. If qb11 · · · qbss divides v, then pamm does not divide v for some
m ∈ {1, . . . , r}; so we can take the positive integer α ≤ am such that pα−1

m divides
v but pαm does not divide v. Hence v is not adjacent to (x/pαm)y. We color v with

x̂/pαm. If qbtt does not divide v for some t ∈ {1, . . . , s}, then we can find the positive

integer β ≤ bt such that qβ−1
t divides v but qβt does not divide v. Hence v is not

adjacent to (x/qβt )y. We color v with x̂/qβt .

Case 2. v is adjacent to c for all c ∈ C1. In this case, v is a multiple of x. If
qb1+1
1 · · · qbs+1

s divides v, then v ∈ C1, which is a contradiction to the choice of v.
Therefore we can find an element i ∈ {1, . . . , s} such that qbii divides v but qbi+1

i
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does not divide v. Clearly, v(y/qi) is not a multiple of n. Hence v and y/qi are not
adjacent. We color v with i.

It remains to show that there are no adjacent vertices with the same color. Let
v1, v2 ∈ Z(Zn) have the same color. Since C is a clique, at least one of v1 and
v2 does not belong to C. Suppose that v1 ∈ C but v2 ∈ Z(Zn) \ C. If the color

of v1 and v2 is x̂/pαm for some m ∈ {1, . . . , r} and α ∈ {1, . . . , am}, then by the
coloring of v1 and v2, v1 = (x/pαm)y and pαm does not divide v2; so v1v2 is not a

multiple of n. Hence v1 is not adjacent to v2. If the color of v1 and v2 is x̂/qβt
for some t ∈ {1, . . . , s} and β ∈ {1, . . . , bt}, then by the coloring of v1 and v2,

v1 = (x/qβt )y and qβt does not divide v2; so v1v2 is not a multiple of n. Hence
v1 is not adjacent to v2. If i is the color of v1 and v2 for some i ∈ {1, . . . , s},
then v1 = y/qi and so by the coloring of v2, v1 and v2 are not adjacent. We

next suppose that v1, v2 ∈ Z(Zn) \ C. If x̂/pαm is the color of v1 and v2 for some
m ∈ {1, . . . , r} and α ∈ {1, . . . , am}, then by Case 1, pαm divides neither v1 nor v2;

so p2amm does not divide v1v2. Hence v1 and v2 are not adjacent. If x̂/qβt is the

color of v1 and v2 for some t ∈ {1, . . . , s} and β ∈ {1, . . . , bt}, then by Case 1, qβt
divides neither v1 nor v2; so q2btt does not divide v1v2. Hence v1 and v2 are not
adjacent. If i is the color of v1 and v2 for some i ∈ {1, . . . , s}, then by Case 2,
qbi+1
i divides neither v1 nor v2. Hence q2bi+1

i cannot divide v1v2, which means that

v1 and v2 are not adjacent. Consequently, Γ(Zn) is (pa11 · · · parr q
b1
1 · · · qbss − 1 + s)-

colorable. Note that by Lemma 3.7, χ(Γ(Zn)) ≥ pa11 · · · parr q
b1
1 · · · qbss − 1 + s. Thus

χ(Γ(Zn)) = pa11 · · · parr q
b1
1 · · · qbss − 1 + s. 2

Example 3.9. Consider Γ(Z18). Let C1 = {6, 12} and C2 = {3}. Then by Theorem
3.8, we color 6, 12 and 3 with 1̂, 2̂ and 1, respectively. Let R = {2, 4, 8, 10, 14, 16}
and let v ∈ R. Then v is not adjacent to 6. Note that v is not divisible by 3; so we
color v with 1̂. Let B = {9, 15} and let v ∈ B. Then v is adjacent to all elements
in C1. Note that v is not divisible by 2; so we color v with 1.

For the detail, see Figure 5. Note that in Figure 5, 1̂, 2̂ and 1 are represented
by red, green and blue, respectively.

Figure 5: The coloring of Γ(Z18)

Example 3.10. Consider Γ(Z72). Let C1 = {12, 24, 36, 48, 60} and C2 = {6}. Then
by Theorem 3.6, we color 6, 12, 24, 36, 48 and 60 with 1, 1̂, 2̂, 3̂, 4̂ and 5̂, respectively.
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Let P = {2, 4, 8, 10, 14, 16, 20, 22, 26, 28, 32, 34, 38, 40, 44, 46, 50, 52, 56, 58, 62, 64, 68,
70} and let v ∈ P . Then v is not adjacent to 12. Note that v is a
multiple of 2 but not a multiple of 3; so we color v with 2̂. Let B =
{3, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69} and let v ∈ B. Then v is not adjacent to 12.
Note that v is not divisible by 2; so we color v with 3̂. Let Y = {18, 30, 42, 54, 66}
and let v ∈ Y . Then v is adjacent to all elements in C1. Since v and 6 are not
adjacent, we color v with 1.

For the detail, see Figure 6. Note that in Figure 6, 1, 1̂, 2̂, 3̂, 4̂ and 5̂ are repre-
sented by yellow, red, pink, blue, sky-blue and green, respectively.

Figure 6: The coloring of Γ(Z72)
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