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THE ZERO-DIVISOR GRAPHS OF Z(+)Zn AND (Z(+)Zn)[X]]
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Abstract. Let Z be the ring of integers and let Zn be the ring of integers

modulo n. Let Z(+)Zn be the idealization of Zn in Z and let (Z(+)Zn)[X]]
be either (Z(+)Zn)[X] or (Z(+)Zn)[[X]]. In this article, we study the zero-

divisor graphs of Z(+)Zn and (Z(+)Zn)[X]]. More precisely, we completely
characterize the diameter and the girth of the zero-divisor graphs of Z(+)Zn

and (Z(+)Zn)[X]]. We also calculate the chromatic number of the zero-

divisor graphs of Z(+)Zn and (Z(+)Zn)[X]].
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1. Introduction

1.1. Preliminaries. In order to help the reader’s better understanding, this
subsection is devoted to review some preliminaries.

Let R be a commutative ring with identity and let M be a unitary R-module.
Then the idealization ofM in R (or trivial extension of R byM) is a commutative
ring

R(+)M := {(r,m) | r ∈ R and m ∈ M}
under the usual addition and the multiplication defined as (r1,m1)(r2,m2) =
(r1r2, r1m2 + r2m1) for all (r1,m1), (r2,m2) ∈ R(+)M . It is obvious that (1, 0)
is the identity of R(+)M . For more on the idealization, the readers can refer to
[4, 8].

Let G be an (undirected) graph. Recall that G is connected if there is a path
between any two distinct vertices of G. The graph G is said to be complete if
any two distinct vertices are adjacent. The complete graph with n vertices is
denoted by Kn. The graph G is called a null graph (or edgeless graph) if G has
no edges, and we denote by Kn the null graph with n vertices. An independent
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set (or stable set) in G is a set of pairwise nonadjacent vertices. The graph G is
a bipartite graph if the vertex set of G is the union of two disjoint independent
sets. In this case, the disjoint independent sets are called the partite sets of G.
The graph G is a complete bipartite graph if G is a bipartite graph such that
two distinct vertices are adjacent if and only if they belong to different partite
sets. If one of the partite sets of a complete bipartite graph G is a singleton set,
then we call G a star graph. We denote the complete bipartite graph by Km,n,
where m and n are the cardinal numbers of the partite sets. We also denote the
star graph by K1,n. For vertices a and b in G, d(a, b) denotes the length of the
shortest path from a to b. If there is no such path, then d(a, b) is defined to be
∞; and d(a, a) is defined to be zero. The diameter of G, denoted by diam(G),
is the supremum of {d(a, b) | a and b are vertices of G}. The girth of G, denoted
by g(G), is defined as the length of the shortest cycle in G. If G contains no
cycles, then g(G) is defined to be ∞. A subgraph H of G is an induced subgraph
of G if two vertices of H are adjacent in H if and only if they are adjacent in G.
The chromatic number of G, denoted by χ(G), is the minimum number of colors
needed to color the vertices of G so that no two adjacent vertices share the same
color. A clique C in G is a subset of the vertex set of G such that the induced
subgraph of G by C is a complete graph. A maximal clique in G is a clique that
cannot be extended by including one more adjacent vertex. For more on graph
theory, the readers can refer to [14].

1.2. The zero-divisor graph of a commutative ring. Let R be a commu-
tative ring with identity and let Z(R) be the set of nonzero zero-divisors of R.
The zero-divisor graph of R, denoted by Γ(R), is the simple graph with vertex
set Z(R), and for distinct a, b ∈ Z(R), a and b are adjacent if and only if ab = 0.
Clearly, Γ(R) is the null graph if and only if R is an integral domain.

In [6], Beck first introduced the concept of the zero-divisor graphs of com-
mutative rings and in [3], Anderson and Naseer continued to study Beck’s in-
vestigation. In their papers, all elements of R are vertices of the zero-divisor
graph and the authors were mainly interested in colorings. In [2], Anderson and
Livingston gave the present definition of Γ(R) in order to emphasize the study
of the interplay between graph-theoretic properties of Γ(R) and ring-theoretic
properties of R. Later, in [5], Axtell and Stickles studied the zero-divisor graph
of idealizations. It was shown that Γ(R) is connected with diam(Γ(R)) ≤ 3 [2,
Theorem 2.3]; and g(Γ(R)) ≤ 4 [11, (1.4)].

For more on the zero-divisor graph of a commutative ring, the readers can
refer to a survey article [1].

Let Z be the ring of integers and let Zn be the ring of integers modulo n. For a
commutative ring R, R[X]] denotes either the polynomial ring R[X] or the power
series ring R[[X]]. In [12, 13], the authors studied some properties of Γ(Zn) and
Γ(Z[X]]). In fact, they completely characterized the diameter and the girth of
Γ(Zn) and Γ(Z[X]]). Also, they calculated the chromatic number of Γ(Zn) and
Γ(Z[X]]). The aim of this paper is to study some properties of Γ(Z(+)Zn) and
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Γ((Z(+)Zn)[X]]). In Section 2, we completely characterize the diameter and the
girth of Γ(Z(+)Zn). We also calculate the chromatic number of Γ(Z(+)Zn). In
Section 3, we calculate the diameter and the girth of Γ((Z(+)Zn)[X]]). We also
calculate the chromatic number of Γ((Z(+)Zn)[X]]).

Note that if n = 1, then Z(+)Z1 is isomorphic to Z; so Γ(Z(+)Z1) is the
null graph. Therefore Γ((Z(+)Z1)[X]]) is also the null graph (cf. [10, Theo-
rem 2] and [7, Theorem 5]). Hence in this paper, we only consider the case
that n ≥ 2. Finally, we mention that all figures are drawn by using website
http://graphonline.ru/en/.

2. The zero-divisor graph of Z(+)Zn

We start this section with the characterization of Z(Z(+)Zn).

Lemma 2.1. Let p1, . . . , pr be distinct primes, s1, . . . , sr positive integers and

n = ps11 · · · psrr . Then Z(Z(+)Zn) =
{
(0, α) |α ∈ Zn \ {0}

}
∪
(

r⋃
i=1

{
(pik, α) | k ∈

Z \ {0} and α ∈ Zn

})
.

Proof. Let (0, α) be a nonzero element of Z(+)Zn. Then (0, α)(n, 0) = (0, 0);
so (0, α) ∈ Z(Z(+)Zn). Let k be a nonzero integer and let α ∈ Zn. Then for

any i ∈ {1, . . . , r}, (pik, α)
(
0, n

pi

)
= (0, 0); so (pik, α) ∈ Z(Z(+)Zn). For the

reverse containment, let (a, α) ∈ Z(Z(+)Zn). Then (a, α)(b, β) = (0, 0) for some
(b, β) ∈ Z(Z(+)Zn); so ab = 0 and aβ + bα ≡ 0 (mod n). If a = 0, then α ̸≡ 0
(mod n); so we have nothing to prove. Suppose that a ̸= 0. Then b = 0; so β ̸≡ 0
(mod n) and aβ ≡ 0 (mod n). Therefore we can find an index i ∈ {1, . . . , r}
such that a is divisible by pi. Hence (a, α) = (pik, α) for some nonzero integer

k. Thus Z(Z(+)Zn) =
{
(0, α) |α ∈ Zn \ {0}

}
∪
(

r⋃
i=1

{
(pik, α) | k ∈ Z \ {0} and

α ∈ Zn

})
. □

Let n = ps11 · · · psrr for some distinct primes p1, . . . , pr and some positive inte-
gers s1, . . . , sr. From now on, let An denote the set

{
(0, α) |α ∈ Zn \ {0}

}
and

let Bn stand for the set
r⋃

i=1

{
(pik, α) | k ∈ Z \ {0} and α ∈ Zn

}
. It is obvious

that An ∩Bn = ∅; so by Lemma 2.1, Z(Z(+)Zn) is the disjoint union of An and
Bn.

Remark 2.2. Let n ≥ 2 be an integer.
(1) Let (0, α), (0, β) ∈ An. Then (0, α)(0, β) = (0, 0); so the induced subgraph

of Γ(Z(+)Zn) by the set An is the complete graph Kn−1.
(2) Write n = ps11 · · · psrr for some distinct primes p1, . . . , pr and some positive

integers s1, . . . , sr. Let (pik1, α1), (pjk2, α2) ∈ Bn. Then (pik1, α1)(pjk2, α2) ̸=
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(0, 0); so the induced subgraph of Γ(Z(+)Zn) induced by the set Bn is the
countably infinite null graph K∞.

Corollary 2.3. Let n ≥ 2 be an integer. Then the following assertions hold.

(1) Γ(Z(+)Zn) is never a complete graph.
(2) Γ(Z(+)Zn) is a star graph if and only if n = 2.

Proof. (1) The result is an immediate consequence of Remark 2.2(2).
(2) Suppose that n = 2. Then A2 = {(0, 1)} and B2 =

{
(2k, α) | k ∈ Z \ {0}

and α ∈ Z2

}
. Let (2k1, α1), (2k2, α2) be two distinct elements of B2. Then

(2k1, α1) − (0, 1) − (2k2, α2) is a path in Γ(Z(+)Z2); so by Remark 2.2(2),
d
(
(2k1, α1), (2k2, α2)

)
= 2. Thus Γ(Z(+)Z2) is the star graph K1,∞.

For the converse, suppose that Γ(Z(+)Zn) is a star graph. Then by Remark
2.2(2), there exists an element (0, α) ∈ An such that (0, α)(b, β) = (0, 0) for all
(b, β) ∈ Z(Z(+)Zn) \ {(0, α)}. Note that the induced subgraph of Γ(Z(+)Zn)
induced by the set Z(Z(+)Zn) \ {(0, α)} is the null graph K∞. If n ≥ 3, then
there exists an element (0, γ) ∈ Z(Z(+)Zn) \ {(0, α)}. Note that (n, 0) ∈ Bn

with (0, γ)(n, 0) = (0, 0). This is a contradiction. Thus n = 2. □

Remark 2.4. Let n ≥ 2 be an integer. Suppose that Γ(Z(+)Zn) is a bipartite
graph. Then by Remark 2.2, n = 2 and the partite sets of Γ(Z(+)Z2) is A2 and
B2. Thus Γ(Z(+)Zn) is a (complete) bipartite graph if and only if Γ(Z(+)Zn)
is a star graph, if and only if n = 2.

Figure 1. The star graph: Γ(Z(+)Z2)

We now give the characterization of the diameters of Γ(Z(+)Zn).

Theorem 2.5. Let n ≥ 2 be an integer. Then the following statements hold.

(1) diam(Γ(Z(+)Zn)) = 2 if (and only if) n = ps for some prime p and
some integer s ≥ 1.

(2) diam(Γ(Z(+)Zn)) = 3 if (and only if) n = ps11 · · · psrr for some distinct
primes p1, . . . , pr (r ≥ 2) and some positive integers s1, . . . , sr.

Proof. (1) Suppose that n = p for some prime p. If p = 2, then by Corollary
2.3(2), Γ(Z(+)Z2) is a star graph; so diam(Γ(Z(+)Z2)) = 2. If p ≥ 3, let (0, α) ∈
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Ap and let (pk1, β1), (pk2, β2) be distinct elements of Bp. Then (0, α)(pk1, β1) =
(0, 0) = (0, α)(pk2, β2); so by Remark 2.2(2), d

(
(pk1, β1), (pk2, β2)

)
= 2. Note

that by Remark 2.2(1), the induced subgraph of Γ(Z(+)Zp) induced by the set
Ap is the complete graph Kp−1. Hence diam(Γ(Z(+)Zp)) = 2.

We next suppose that n = ps for some prime p and some integer s ≥ 2. Then
by Remark 2.2(1), the induced subgraph of Γ(Z(+)Zps) induced by the set Aps

is the complete graph Kps−1. Let (pk1, α1), (pk2, α2) be distinct elements in
Bps . Then (pk1, α1)(0, p

s−1) = (0, 0) = (pk2, α2)(0, p
s−1); so by Remark 2.2(2),

d
(
(pk1, α1), (pk2, α2)

)
= 2. Also, by Remark 2.2(1), d

(
(0, β), (pk1, α1)

)
≤ 2 for

all (0, β) ∈ Aps . Hence diam(Γ(Z(+)Zps)) = 2.
(2) Suppose that n = ps11 · · · psrr for some distinct primes p1, . . . , pr (r ≥ 2)

and some positive integers s1, . . . , sr. Let (pi, 0), (pj , 0) ∈ Bn with i ̸= j. Then
by Remark 2.2(2) and [2, Theorem 2.3], 2 ≤ d

(
(pi, 0), (pj , 0)

)
≤ 3. Suppose to

the contrary that there exists an element (a, α) ∈ Z(Z(+)Zn) \ {(pi, 0), (pj , 0)}
such that (pi, 0)−(a, α)−(pj , 0) is a path in Γ(Z(+)Zn). Then by Remark 2.2(2),
(a, α) ∈ An; so a = 0 and α ̸≡ 0 (mod n). Now, piα ≡ 0 (mod n) and pjα ≡ 0
(mod n); so α is a multiple of both n

pi
and n

pj
. Therefore α is divisible by n.

This is absurd. Hence d
(
(pi, 0), (pj , 0)

)
= 3. Thus diam(Γ(Z(+)Zn)) = 3. □

Figure 2. The diameter of some zero-divisor graphs

Next, we study the girth of Γ(Z(+)Zn).

Theorem 2.6. Let n ≥ 2 be an integer. Then the following statements hold.

(1) g(Γ(Z(+)Zn)) = 3 if (and only if) n ≥ 3.
(2) g(Γ(Z(+)Zn)) = ∞ if (and only if) n = 2.

Proof. (1) Let n ≥ 3 be an integer. Note that (0, 1)− (0, 2)− (n, 1)− (0, 1) is a
cycle of length 3 in Γ(Z(+)Zn). Thus g(Γ(Z(+)Zn)) = 3.

(2) Note that A2 = {(0, 1)}. If there exists a cycle in Γ(Z(+)Z2), then we
can find two distinct elements (2k1, α1), (2k2, α2) ∈ B2 such that (2k1, α1) and
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(2k2, α2) are adjacent. However, this is impossible because of Remark 2.2(2).
Hence Γ(Z(+)Z2) has no cycles. Thus g(Γ(Z(+)Z2)) = ∞. □

Figure 3. The girth of some zero-divisor graphs

The final study in this section is to calculate the chromatic number of Γ(Z(+)Zn).
To do this, we need the following lemma.

Lemma 2.7. Let n ≥ 2 be an integer and let C = An ∪ {(n, 0)}. Then C is a
maximal clique of Γ(Z(+)Zn).

Proof. Note that the product of any two distinct elements of C is (0, 0); so C
is a clique of Γ(Z(+)Zn). Suppose to the contrary that there exists an element
(a, α) ∈ Z(Z(+)Zn) \ C such that (a, α)(b, β) = (0, 0) for all (b, β) ∈ C. Then
(a, α)(n, 0) = (0, 0). Therefore a = 0, which implies that α ̸≡ 0 (mod n). Hence
(a, α) ∈ C. This is a contradiction to the choice of (a, α). Thus C is a maximal
clique of Γ(Z(+)Zn). □

Theorem 2.8. If n ≥ 2 is an integer, then χ(Γ(Z(+)Zn)) = n.

Proof. Let C = An ∪ {(n, 0)}. Then by Lemma 2.7, C is a maximal clique of
Γ(Z(+)Zn). For each i ∈ {1, . . . , n − 1}, let i be the color of (0, i) and let n be
the color of (n, 0). Note that Z(Z(+)Zn) \ C is a nonempty set. Let (a, α) ∈
Z(Z(+)Zn)\C. Then by Lemma 2.7, there exists an element (b, β) ∈ C such that
(a, α) and (b, β) are not adjacent. In this case, we color (a, α) with the color of
(b, β). Note that by Lemma 2.1, Z(Z(+)Zn)\C ⊊ Bn; so by Remark 2.2(2), any
two vertices in Z(Z(+)Zn) \ C are not adjacent. Thus χ(Γ(Z(+)Zn)) = n. □

Remark 2.9. Let n ≥ 2 be an integer and let C = An ∪ {(n, 0)}. Take any
element (a, α) ∈ Z(Z(+)Zn) \ C. Then (a, α) ∈ Bn; so by Remark 2.2(2), (a, α)
and (n, 0) are not adjacent. Hence we can always color (a, α) with n in the proof
of Theorem 2.8.
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Figure 4. The coloring of some zero-divisor graphs

3. The zero-divisor graph of (Z(+)Zn)[X]]

Let R be a commutative ring with identity, R[X] the polynomial ring over R
and R[[X]] the power series ring over R. Let R[X]] denote either the polynomial
ring or the power series ring. Recall that R is a Noetherian ring if it satisfies
the ascending chain condition on ideals of R (or equivalently, every ideal of R
is finitely generated.) In order to study the zero-divisor graph of (Z(+)Zn)[X]],
we need the following lemma which is well known as McCoy’s theorem.

Lemma 3.1. ([10, Theorem 2] and [7, Theorem 5]) Let R be a commutative
ring with identity. Then the following assertions hold.

(1) If f ∈ Z(R[X]), then there exists a nonzero element r ∈ R such that
rf = 0.

(2) If R is a Noetherian ring and f ∈ Z(R[[X]]), then there exists a nonzero
element r ∈ R such that rf = 0.

At this time, we should note that Z is a Noetherian ring and for any integer
n ≥ 2, Zn is a finitely generated Z-module; so Z(+)Zn is a Noetherian ring [4,
Theorem 4.8] (or [9, Corollary 3.9]).

Lemma 3.2. Let p1, . . . , pr be distinct primes, s1, . . . , sr positive integers and

n = ps11 · · · psrr . Then Z((Z(+)Zn)[X]]) =

{ ∑
m≥0

(0, bm)Xm | bm ̸= 0 for some

m ∈ N0

}
∪
(

r⋃
ℓ=1

{ ∑
m≥0

(pℓkm, bm)Xm | km ̸= 0 for some m ∈ N0 and bm ∈ Zn

})
.

Proof. Let f =
∑
m≥0

(0, bm)Xm be a nonzero element of (Z(+)Zn)[X]]. Then

(n, 0)f = (0, 0); so f ∈ Z((Z(+)Zn)[X]]). Fix an index ℓ ∈ {1, . . . , r}, and let
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g =
∑
m≥0

(pℓkm, bm)Xm be an element of (Z(+)Zn)[X]], where km ̸= 0 for some

m ∈ N0. Then
(
0, n

pℓ

)
g = (0, 0); so g ∈ Z((Z(+)Zn)[X]]).

For the reverse containment, let f =
∑
m≥0

(am, bm)Xm ∈ Z((Z(+)Zn)[X]]). If

am = 0 for allm ∈ N0, then the proof is done; so we next suppose that am ̸= 0 for
some m ∈ N0. Now, by Lemma 3.1, there exists an element (r, s) ∈ Z(Z(+)Zn)
such that (r, s)f = (0, 0); so (r, s)(am, bm) = (0, 0) for all m ∈ N0. Therefore
r = 0 and ams ≡ 0 (mod n) for all m ∈ N0. Since s ̸≡ 0 (mod n), we can
find an index ℓ ∈ {1, . . . , r} such that s is not divisible by psℓℓ ; so am is divisible
by pℓ for all m ∈ N0. Hence f =

∑
m≥0

(pℓkm, bm)Xm, where km ̸= 0 for some

m ∈ N0. Thus Z((Z(+)Zn)[X]]) =

{ ∑
m≥0

(0, bm)Xm | bm ̸= 0 for some m ∈

N0

}
∪
(

r⋃
ℓ=1

{ ∑
m≥0

(pℓkm, bm)Xm | km ̸= 0 for some m ∈ N0 and bm ∈ Zn

})
. □

Let n = ps11 · · · psrr for some distinct primes p1, . . . , pr and some positive in-

tegers s1, . . . , sr. From now on, let Cn =

{ ∑
m≥0

(0, bm)Xm | bm ̸= 0 for some

m ∈ N0

}
and let Dn =

r⋃
ℓ=1

{ ∑
m≥0

(pℓkm, bm)Xm | km ̸= 0 for some m ∈ N0 and

bm ∈ Zn

}
. It is obvious that Cn ∩Dn = ∅; so by Lemma 3.2, Z((Z(+)Zn)[X]])

is the disjoint union of Cn and Dn.

Remark 3.3. Let n ≥ 2 be an integer.
(1) Let

∑
m≥0

(0, am)Xm and
∑
m≥0

(0, bm)Xm be two elements of Cn. Then( ∑
m≥0

(0, am)Xm

)( ∑
m≥0

(0, bm)Xm

)
= (0, 0). Thus the induced subgraph of

Γ((Z(+)Zn)[X]]) by the set Cn is the complete graph K∞. In fact, the induced
subgraph of Γ((Z(+)Zn)[X]) by the set Cn is the countably infinite complete
graph. Also, note that |Cn| = c in Γ((Z(+)Zn)[[X]]), where c is the cardinality
of the set of real numbers. Hence the induced subgraph of Γ((Z(+)Zn)[[X]]) by
the set Cn is the uncountably infinite complete graph.

(2) Write n = ps11 · · · psrr for some distinct primes p1, . . . , pr and some posi-
tive integers s1, . . . , sr. Let

∑
m≥0

(pikm, dm)Xm,
∑
m≥0

(pjhm, em)Xm ∈ Dn. Then( ∑
m≥0

(pikm, dm)Xm

)( ∑
m≥0

(pjhm, em)Xm

)
̸= (0, 0). Hence the induced sub-

graph of Γ((Z(+)Zn)[X]]) by the set Dn is the infinite null graph K∞. More
precisely, |Dn| = ℵ0 in Γ((Z(+)Zn)[X]) and |Dn| = c in Γ((Z(+)Zn)[[X]])); so
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the induced subgraph of Γ((Z(+)Zn)[X]) (resp., Γ((Z(+)Zn)[[X]])) by the set
Dn is the countably (resp., uncountably) infinite null graph.

Theorem 3.4. Let n ≥ 2 be an integer. Then the following statements hold.

(1) diam(Γ((Z(+)Zn)[X]])) = 2 if (and only if) n = ps for some prime p
and some integer s ≥ 1.

(2) diam(Γ((Z(+)Zn)[X]])) = 3 if (and only if) n = ps11 · · · psrr for some
distinct primes p1, . . . , pr (r ≥ 2) and some positive integers s1, . . . , sr.

Proof. (1) Suppose that n = ps for some prime p and some integer s ≥ 1.
Let f and g be two distinct elements of Z((Z(+)Zn)[X]]). If f, g ∈ Cn, then
f and g are adjacent by Remark 3.3(1). Suppose that at least one of f and
g belongs to Dn. Then f − (0, ps−1) − g is a path in Γ((Z(+)Zn)[X]]); so
d(f, g) ≤ 2. Hence diam(Γ((Z(+)Zn)[X]])) ≤ 2. Note that by Remark 3.3(2),
diam(Γ((Z(+)Zn)[X]])) ≥ 2. Thus diam(Γ((Z(+)Zn)[X]])) = 2.

(2) Suppose that n = ps11 · · · psrr for some distinct primes p1, . . . , pr (r ≥ 2)
and some positive integers s1, . . . , sr. Let (pi, 0), (pj , 0) ∈ Dn with i ̸= j. Then
by Remark 3.3(2), d ((pi, 0), (pj , 0)) ≥ 2. Suppose to the contrary that there
exists an element f =

∑
m≥0

(am, bm)Xm ∈ Z((Z(+)Zn)[X]])\{(pi, 0), (pj , 0)} such

that (pi, 0)f = (0, 0) = (pj , 0)f . Then by Remark 3.3(2), f ∈ Cn; so for all
m ∈ N0, am = 0, pibm ≡ 0 ≡ pjbm (mod n). Therefore bm is a multiple of both
n
pi

and n
pj

for all m ∈ N0, which implies that bm ≡ 0 (mod n) for all m ∈ N0.

This is absurd. Hence d ((pi, 0), (pj , 0)) ≥ 3. Thus diam(Γ((Z(+)Zn)[X]])) = 3
[2, Theorem 2.3]. □

Figure 5. The diameter of some zero-divisor graphs

The girth of Γ((Z(+)Zn)[X]]) can be easily characterized as follows:

Theorem 3.5. For any integer n ≥ 2, g(Γ((Z(+)Zn)[X]])) = 3.

Proof. Fix an integer n ≥ 2. Note that (0, 1) − (0, 1)X − (0, 1)X2 − (0, 1) is a
cycle of length 3 in Γ((Z(+)Zn)[X]]). Thus g(Γ((Z(+)Zn)[X]])) = 3. □
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Figure 6. The girth of some zero-divisor graphs

Lemma 3.6. Let n ≥ 2 be an integer and let C = Cn ∪ {(n, 0)}. Then C is a
maximal clique of Γ((Z(+)Zn)[X]]).

Proof. Note that any two distinct elements of C are adjacent; so C is a clique
of Γ((Z(+)Zn)[X]]). Suppose to the contrary that there exists an element f =∑
m≥0

(am, bm)Xm ∈ Z((Z(+)Zn)[X]])\C such that f is adjacent to all elements in

C. Then (n, 0)f = (0, 0); so am = 0 for all m ∈ N0. Hence f =
∑
m≥0

(0, bm)Xm ∈

C. This is a contradiction to the choice of f . Thus C is a maximal clique of
Γ((Z(+)Zn)[X]]). □

Theorem 3.7. For an integer n ≥ 2, the following statements hold.

(1) χ(Γ((Z(+)Zn)[X])) = ℵ0.
(2) χ(Γ((Z(+)Zn)[[X]])) = c.

Proof. (1) Let C be a maximal clique of Γ((Z(+)Zn)[X]) as in Lemma 3.6.
Then by Remark 3.3(1) and Lemma 3.6, the chromatic number of the induced
subgraph of Γ((Z(+)Zn)[X]) by the set C is ℵ0. Let n be the color of (n, 0)

and take any element f =
m∑
i=0

(ai, bi)X
i ∈ Z((Z(+)Zn)[X]) \C. Then f ∈ Dn by

the paragraph just after Lemma 3.2; so by Remark 3.3(2), f and (n, 0) are not
adjacent. Hence we color f with n. Thus χ(Γ((Z(+)Zn)[X])) = ℵ0.

(2) Let C be a maximal clique of Γ((Z(+)Zn)[[X]]) as in Lemma 3.6. Then by
Remark 3.3(1) and Lemma 3.6, the chromatic number of the induced subgraph
of Γ((Z(+)Zn)[[X]]) by the set C is c. Let n be the color of (n, 0) and choose
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any element f =
∞∑
i=0

(ai, bi)X
i ∈ Z((Z(+)Zn)[[X]]) \ C. Then f ∈ Dn by the

paragraph after Lemma 3.2; so by Remark 3.3(2), f and (n, 0) are not adjacent.
Hence we color f with n. Thus χ(Γ((Z(+)Zn)[[X]])) = c. □

Figure 7. The coloring of some zero-divisor graphs

References

1. D.F. Anderson, M.C. Axtell, and J.A. Stickles, Jr, Zero-divisor graphs in commutative
rings, in: M. Fontana et al. (Eds), Commutative Algebra: Noetherian and Non-Noetherian

Perspectives, Springer, New York, 2011, pp. 23-45.

2. D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Al-
gebra 217 (1999), 434-447.

3. D.D. Anderson and M. Naseer, Beck’s coloring of a commutative ring, J. Algebra 159
(1993), 500-514.

4. D.D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009),

3-56.
5. M. Axtell and J. Stickles, Zero-divisor graphs of idealizations, J. Pure Appl. Algebra 204

(2006), 235-243.
6. I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), 208-226.
7. D.E. Fields, Zero divisors and nilpotent elements in power series rings, Proc. Amer. Math.

Soc. 27 (1971), 427-433.

8. J.A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, New York and Basel,
1988.

9. J.W. Lim and D.Y. Oh, S-Noetherian properties on amalgamated algebras along an ideal,
J. Pure Appl. Algebra 218 (2014), 1075-1080.

10. N.H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (1942), 286-295.

11. S.B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30 (2002), 3533-3558.

12. M.J. Park, E.S. Kim, and J.W. Lim, The zero-divisor graph of Zn[X]], Kyungpook Math.
J. 60 (2020), 723-729.

13. S.J. Pi, S.H. Kim, and J.W. Lim, The zero-divisor graph of the ring of integers modulo n,
Kyungpook Math. J. 59 (2019), 591-601.



740 Min Ji Park, Jong Won Jeong, Jung Wook Lim, and Jin Won Bae

14. D.B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, Upper Saddle River,

NJ, 2001.

Min Ji Park received Ph.D. from Hannam University. She is currently a lecturer at Han-

nam University since 2019. Her research interests are number theory, p-adic functional
analysis and commutative algebra.

Department of Mathematics, College of Life Science and Nano Technology, Hannam Uni-

versity, Daejeon 34430, Republic of Korea.
e-mail: mjpark5764@gmail.com

Jong Won Jeong received B.A. from Kyungpook National University. He is currently an
M.S. candidate at Kyungpook National University. His research interest is commutative

algebra.

School of Mathematics, Kyungpook National University, Daegu 41566, Republic of Korea.

e-mail: @gmail.com

Jung Wook Lim received Ph.D. from Pohang University of Science and Technology. He is
currently a professor at Kyungpook National University since 2013. His research interests

are commutative algebra and combinatorics.

Department of Mathematics, College of Natural Sciences, Kyungpook National University,

Daegu 41566, Republic of Korea.

e-mail: jwlim@knu.ac.kr

Jin Won Bae is currently a B.S. candidate at Kyungpook National University. His research

interest is commutative algebra.

Department of Mathematics, College of Natural Sciences, Kyungpook National University,

Daegu 41566, Republic of Korea.

e-mail: bjw7612@gmail.com




