• Title/Summary/Keyword: instrumental correction

Search Result 24, Processing Time 0.034 seconds

Correction of Accelerogram in Frequency Domain (주파수영역에서의 가속도 기록 보정)

  • Park, Chang Ho;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.71-79
    • /
    • 1992
  • In general, the accelerogram of earthquake ground motion or the accelerogram obtained from dynamic tests contain various errors. In these errors of the accelerograms, there are instrumental errors(magnitude and phase distortion) due to the response characteristics of accelerometer and the digitizing error concentrated in low and high frequency components and random errors. Then, these errors may be detrimental to the results of data processing and dynamic analysis. An efficient method which can correct the errors of the accelerogram is proposed in this study. The correction of errors can be accomplished through four steps as followes ; 1) using an interpolation method a data form appropriate to the error correction is prepared, 2) low and high frequency errors of the accelerogram are removed by band-pass filter between prescribed frequency limits, 3) instrumental errors are corrected using dynamic equilibrium equation of the accelerometer, 4) velocity and displacement are obtained by integrating corrected accelerogram. Presently, infinite impulse response(IIR) filter and finite impulse response (FIR) filter are generally used as band-pass filter. In the proposed error correction procedure, the deficiencies of FIR filter and IIR filter are reduced and, using the properties of the differentiation and the integration of Fourier transform, the accuracy of instrument correction and integration is improved.

  • PDF

Error Correction of Laser Interferometer Using Capacitive Sensor (정전용량센서를 이용한 레이저 간섭계 오차보정)

  • Kim, Jae-Cheon;Seo, Suk-Hyun;Jeon, Jae-Wook;Park, Ki-Heon;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.342-344
    • /
    • 2006
  • During last years, large investments have been directed to development and research of nano-technological products like semiconductor, display panel, optic-fiber communication components, life technology, and ultra-precision components. All quantitative measurements at nanometre scale should guarantees accurate results and high quality. Laser interferometer is one of most famous nanometre scale devices to be able to measure metre-scale distance with nanometre scale resolution, but it is easily affected by various error causes like geometrical, instrumental and environmental factor. On the other side, capacitive sensor is robust to above error factors, but it is able to measure relatively shorter distance, under $100{\mu}m$, than laser interferometer. New error correction method for laser interferometry using capacitive sensor will be introduced in this paper.

  • PDF

Corrections and Artifacts Regarding Filter-based Measurements of Black Carbon (필터 기반 블랙카본 측정에서의 보정과 불확실성에 대한 고찰)

  • Lee, Jeonghoon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.610-615
    • /
    • 2018
  • A filter-based optical technique is one of the representative ways for the measurement and quantification of black carbon (BC). Since the filter-based technique adopts a simple principle, it is easy to put into practical use and instrumental products have already been commercialized. In this study, however, the absorption coefficients of BC after the correction process was estimated to be approximately 3 times lower than those before the correction process. In addition, the difference between before and after corrections was also evident for the trend of increasing and decreasing absorption coefficient. When BC concentration is low, uncertainty may increase regardless of corrections due to the artifacts of filter. In this sense, techniques without using a filter are required, and uncertainties will be minimized if these techniques are used to further complement the filter-based black carbon measurements. Finally, this study is believed to help understand the uncertainty and correction of filter-based black carbon measurements.

Correction of CIEDE2000 Color Difference Formula for the Analysis of Low Chroma and Low Lightness Colors

  • Woo Hwa-Lyung;Kim, Sam-Soo;Hudson Samuel M.
    • Textile Coloration and Finishing
    • /
    • v.18 no.5 s.90
    • /
    • pp.72-79
    • /
    • 2006
  • There are many discrepancies between visually perceived color-difference and that which is quantified from an instrumental measurement when dark color samples are measured in the textile industry. The samples were prepared to represent these dark shades and the values of the instrumental results from conventional color-difference formulae(CIELAB, CMC, BFD II, CIE94, LCD99 and CIEDE2000). Those of visual assessment were compared. The experimental results show that the CIELAB formula gives the best performance over other formulae, and the CIEDE2000 formula for the color-difference according to chroma presents the worst performance. Therefore, we can say that the problems in color matching of dark shades are caused by imperfect formula, because the results obtained from a color-difference formulae are different and the CMC which is used as a standard color-difference formula in the textile industry is not correct. So, a revised color-difference formula is proposed in this study, to account for these problems.

Review on Pre-processing of Earthquake Data from KEPRI Seismic Monitoring System (전력연구원 지진관측자료의 사전자료처리 기법 및 효과적인 활용에 관한 고찰)

  • 연관희;박동희;최원학;장천중
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.39-50
    • /
    • 2002
  • Several pre-processing techniques for earthquake data from earthquake monitoring institutes in Korea including Korea Electric Power Research Institute are thoroughly reviewed. Among these techniques for removing an instrumental response, removing the non-causal ringing distortion by FIR filter, checking calibration status of seismic stations, and minimizing the window effect are introduced and applied to real data. It is also recommended that analysts evaluate S/N ratio in the frequency domain and consider the possibility of using the saturated earthquake data.

Sensitivity analysis of satellite-retrieved SST using IR data from COMS/MI

  • Park, Eun-Bin;Han, Kyung-Soo;Ryu, Jae-Hyun;Lee, Chang-Suk
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.6
    • /
    • pp.589-593
    • /
    • 2013
  • Sea Surface Temperature (SST) is the temperature close to the ocean's surface and affects the Earth's atmosphere as an important parameter for the climate circulation and change. The SST from satellite still has biases from the error in specifying retrieval coefficients from either forward modeling or instrumental biases. So in this paper, we performed sensitivity analysis using input parameter of the SST to notice that the SST is most affected among the input parameter. We used Infrared (IR) data from the Communication, Ocean, and Meteorological Satellite (COMS)/Meteorological Imager (MI) from April 2011 to March 2012. We also used the Global Space-based Inter-Calibration System (GSICS) correction to quality of the IR data from COMS. SST was calculated by substituting the input parameters; IR data with or without the GSICS correction. The results of this sensitivity analysis, the SST was sensitive from -0.0403 to 0.2743 K when the IR data were changed by the GSICS corrections.

Evaluation of peak-fitting software for magnesium quantification through k0-instrumental neutron activation analysis

  • Dasari, Kishore B.;Cho, Hana;Jacimovic, Radojko;Park, Byung-Gun;Sun, Gwang-Min
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.462-468
    • /
    • 2022
  • The selection and effective utilization of peak-fitting software for conventional gamma-ray spectrum analysis is significant for accurate determination of the mass fraction of elements, particularly in complex peak regions. Majority of the peak-fitting programs can derive similar peak characteristics for singlet peaks, but very few programs can deconvolute multi-peaks in a complex region. The deconvolution of multi-peaks requires special peak-fitting functions, such as left and right-skew distributions. In the this study, 843.76 keV (27Mg) peak area from the complex region (840 keV-850 keV) determined and compared using four different peak-fitting programs, namely, GammaVision, Genie2000, HyperLab, and HyperGam. The 843.76 keV peak interfered with 841.63 keV (152mEu) and 846.81 keV (56Mn). The total Mg concentration was determined through k0-instrumental neutron activation analysis by applying the isotopic interference correction factor 27Al(n,p)27Mg through the simultaneous determination of Al concentration. HyperLab and HyperGam peak-fitting programs reported consistent peak areas, and resultant concentrations agreed with the certified values of matrix-certified reference materials.

Moment Magnitude Determination Using P wave of Broadband Data (광대역 지진자료의 P파를 이용한 모멘트 규모 결정)

  • Hwang, Eui-Hong;Lee, Woo-Dong;Jo, Bong-Gon;Jo, Beom-Jun
    • Journal of the Korean Geophysical Society
    • /
    • v.10 no.1
    • /
    • pp.1-12
    • /
    • 2007
  • A method to quickly estimate broadband moment magnitudes (Mwp) to warn regional and teleseismic tsunamigenic earthquakes is tested for application of the method to the different seismic observation environment. In this study, the Mwp is calculated by integrating far-field P-wave or pP-wave of vertical component of displacement seismograms in time domain from earthquakes, having magnitude greater than 5.0 and occurred in and around the Korean peninsula from 2000 to 2006. We carefully set up the size of the time window for the computations to exclude S wave phases and other phases following after the P wave phase. The P wave velocities and the densities from the averaged Korean crustal model are used in the computations. Instrumental correction was performed to remove dependency on the seismograph. The Mwp after the instrumental correction is about 0.1 greater than the Mwp before the correction. The comparison of our results to the those of foreign agencies such as JMA and Havard CMT catalogues shows a higher degree of similarity. Thus our results provide an effective tool to estimate the earthquake size, as well as to issue the necessary information to a tsunami warning system when the effective earthquake occurs around the peninsula.

  • PDF

On characteristics of environmental correction factors in the South Indian Ocean by Topex/Poseidon satellite altimetric data (Topex/Poseidon 위성의 Altimeter자료를 이용한 남인도양의 환경보정인자 특성에 관한 연구)

  • 윤홍주;김영섭;이재철
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.2
    • /
    • pp.117-128
    • /
    • 1998
  • Topex/Poseidon satellite, launched in Auguest 1992, has provided more 5 years of very good quality data. Efficient improvements, either about instrumental accuracy or about sea level data correction, have been made so that Topex/Poseidon has become presently a wonderful tool for many researchers. The first mission data of 73 cycles, September 1992 - August 1994, was used to our study in order to know characteristics of environmental correction factors in the Amsterdam-Crozet-Kerguelen region of the South Indian Ocean. According to standard procedures as defined under user handbook for sea surface height data processes, then we have chosen cycles 43 as the cycle of reference because this cycle has provided the completed data for measurement points and has presented the exacted position of ground track compared to another cycles. It was computed variations of various factors for correction in ascending ground track 103(Amsterdam-Kerguelen continental plateau) and descending ground track170 (Crozet basin). Here the variations of ionosphere, dry troposphere, humid troposphere, electromagnetic bias, elastic tide and loading tide were generally very smaller as a few of cm, but the variations of oceanic tide(30-35cm) and inverted barometer(15-30cm) were higher than another factors. For the correction of ocean tide, our model(CEFMO: Code d' Elements Finis pour la Maree Oceanique) - This is hydrodynamic model that is very well applicated in all oceanic situations - was used because this model has especially good solution in the coastal and island area as the open sea area. Conclusionally, it should be understood that the variation of ocean free surface is mainly under the influence of tides(>80-90%) in the Amsterdam - Crozet- Kerguelen region of the South Indian Ocean.

Data Processing of earthquake data from KEPRI seismic monitoring system (전력연구원 지진관측망 계측지진 분석을 사전자료 처리)

  • 연관희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.58-65
    • /
    • 2001
  • It is essential to know exactly what the response of the seismograph is inclusive of characteristic of the seismic sensors before using it for detailed seismic study. This is because the recorded earthquake data can be more or less affected by the overall system and need to be corrected properly to the analysis`s best to obtain the right results. In this respect, two basic earthquake data processing techniques are introduced and applied, for validation purpose, to real data from KEPRI seismic monitoring system which were established for determining the site-specific characteristics of the earthquakes around the Nuclear Power Plants. One is conventional instrumental correction technique for velocity data and the other is for removing acausal ringing originate from using linear phase FIR filter. These techniques are all implemented in the time domain using digital filtering process and shows the desired results when applied to real earthquake data.

  • PDF