DOI QR코드

DOI QR Code

Evaluation of peak-fitting software for magnesium quantification through k0-instrumental neutron activation analysis

  • Dasari, Kishore B. (HANARO Utilization Division, Korea Atomic Energy Research Institute) ;
  • Cho, Hana (Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science) ;
  • Jacimovic, Radojko (Department of Environmental Sciences, Jozef Stefan Institute) ;
  • Park, Byung-Gun (HANARO Utilization Division, Korea Atomic Energy Research Institute) ;
  • Sun, Gwang-Min (HANARO Utilization Division, Korea Atomic Energy Research Institute)
  • Received : 2021.03.10
  • Accepted : 2021.07.13
  • Published : 2022.02.25

Abstract

The selection and effective utilization of peak-fitting software for conventional gamma-ray spectrum analysis is significant for accurate determination of the mass fraction of elements, particularly in complex peak regions. Majority of the peak-fitting programs can derive similar peak characteristics for singlet peaks, but very few programs can deconvolute multi-peaks in a complex region. The deconvolution of multi-peaks requires special peak-fitting functions, such as left and right-skew distributions. In the this study, 843.76 keV (27Mg) peak area from the complex region (840 keV-850 keV) determined and compared using four different peak-fitting programs, namely, GammaVision, Genie2000, HyperLab, and HyperGam. The 843.76 keV peak interfered with 841.63 keV (152mEu) and 846.81 keV (56Mn). The total Mg concentration was determined through k0-instrumental neutron activation analysis by applying the isotopic interference correction factor 27Al(n,p)27Mg through the simultaneous determination of Al concentration. HyperLab and HyperGam peak-fitting programs reported consistent peak areas, and resultant concentrations agreed with the certified values of matrix-certified reference materials.

Keywords

Acknowledgement

The authors from KAERI & KRISS thank Prof. Milena Horvat, Head of the Department of Environmental Sciences at JSI, for her support of the experimental work at JSI funded by the Slovenian Research Agency (ARRS) programme P1-0143 and the Metrology Institute of the Republic of Slovenia (MIRS), Slovenia contract No. C3212-10-000071 (6401-5/2009/27). This work was supported by KAERI, South Korea through the Korea Government project No. MSIT/1711078081, 2021. This work was also supported by KRISS, South Korea under the project, "Establishment of Measurement Standards for Inorganic Analysis" Grant No. 21011058, 2021.

References

  1. J.-D. Wilhelm, K. Markus, Magnesium basics, Clin. Kidney J. 5 (2012) i3-i14. https://doi.org/10.1093/ndtplus/sfr163
  2. L.J. Dominguez, N. Veronese, M. Barbagallo, Magnesium and hypertension in old age, Nutrients 13 (2021) 139.
  3. R.R. Greenberg, P. Bode, E.A. De Nadai Fernandes, Neutron activation analysis: a primary method of measurement, Spectrochim. Acta B 66 (3-4) (2011) 193-241. https://doi.org/10.1016/j.sab.2010.12.011
  4. R. Jacimovic, B. Smodis, T. Bucar, P. Stegnar, k0-NAA quality assessment by analysis of different certified reference materials using the KAYZERO/SOLCOI software, J. Radioanal. Nucl. Chem. 257 (3) (2003) 659-663. https://doi.org/10.1023/A:1026116916580
  5. H. Cho, K.B. Dasari, R. Jacimovic, R. Zeisler, N.E. Sharp, S.-H. Kim, G.-M. Sun, Y.-H. Yim, Application of the INAA methods for KRISS infant formula CRM analysis: standardization of INAA at KRISS, J. Radioanal. Nucl. Chem. 322 (2019) 1537-1547. https://doi.org/10.1007/s10967-019-06855-5
  6. F. De Corte, The K0-Standardization Method: a Move to the Optimization of Neutron Activation Analysis, Habilitation Thesis, University of Gent, Belgium, 1987.
  7. G. Kennedy, J.-L. Galiniera, L. Zikovsky, Measurement of some primary nuclear interferences in neutron activation analysis with a SLOWPOKE reactor, Can. J. Chem. 64 (1986) 790-792. https://doi.org/10.1139/v86-129
  8. k0 Database, 2020. http://www.kayzero.com/k0naa/k0naaorg/Nuclear_Data_SC/Entries/2020/8/24_Update_of_k0-database_I-128.html. Accessed 02 January 2021.
  9. F. De Corte, A. Simonits, Vade Mecum for K0-Users, DSM Research, Geleen, 1994.
  10. User's Manual for reactor neutron activation analysis (NAA) using the k0 standardization method, in: Kayzero for Windows (KayWin®) Version 3.30, 2017.
  11. M. Blaauw, V. Osorio Fernandez, P. van Espen, G. Bernasconi, R. Capote Noy, H. Manh Dung, N.I. Molla, The 1995 IAEA intercomparison of γ-ray spectrum analysis software, Nucl. Instrum. Methods A 387 (1997) 416-432. https://doi.org/10.1016/S0168-9002(97)00015-6
  12. B.-G. Park, H.D. Choi, C.S. Park, New development of hyperGam and its test of performance for 𝜸-ray spectrum analysis, Nucl. Eng. Technol. 44 (2012) 781-790. https://doi.org/10.5516/NET.08.2011.062
  13. A. Simonits, J. Ostor, S. Kalvin, B. Fazekas, HyperLab: a new concept in gamma-ray spectrum analysis, J. Radioanal. Nucl. Chem. 257 (2003) 589-595. https://doi.org/10.1023/A:1025400917620
  14. J.M. Los Arcos, M. Blaauw, S. Fazinic, V.P. Kolotov, The 2002 IAEA test spectra for low-level γ-ray spectrometry software, Nucl. Instrum. Methods A 536 (2005) 189-195. https://doi.org/10.1016/j.nima.2004.07.286
  15. C.A. Kalfas, M. Axiotis, C. Tsabaris, SPECTRW: a software package for nuclear and atomic spectroscopy, Nucl. Instrum. Methods A 830 (2016) 265-274. https://doi.org/10.1016/j.nima.2016.05.098
  16. L. Szentmiklosi, Fitting special peak shapes of prompt gamma spectra, J. Radioanal. Nucl. Chem. 315 (2018) 663-670. https://doi.org/10.1007/s10967-017-5589-z
  17. HyperLab User's Manual for Gamma Spectroscopy Software, 2014. http://www.hlabsoft.com/web/hl2014/onlinedocs.php. accessed 15 February, 2021.
  18. R. Acharya, K.B. Dasari, D. Chandra Shekhar, P.K. Pujari, Performance of digital gamma ray spectrometer for loss free counting and its application to NAA using short-lived radionuclides, J. Radioanal. Nucl. Chem. 302 (2014) 1333-1337. https://doi.org/10.1007/s10967-014-3565-4
  19. C.S. Park, H.D. Choi, G.M. Sun, J.H. Whang, Status of developing HPGe γ-ray spectrum analysis code HYPERGAM, Prog. Nucl. Energy 50 (2008) 389-393. https://doi.org/10.1016/j.pnucene.2007.11.022
  20. GammaVision Gamma Spectroscopy Software User's Manual, 2016. https://www.ortec-online.com/products/application-software/gammavision.
  21. Genie2000 Basic Spectroscopy Software User's Manual, 2006. https://www3.nd.edu/~wzech/Genie%202000%20Operations%20Manual.pdf.
  22. H. Cho, K.B. Dasari, M.C. Lim, G.M. Sun, R. Jacimovic, Y.-H. Yim, Application of k0-INAA method in preliminary characterization of KRISS urban airborne particulate matter certified reference material, Appl. Sci. 10 (19) (2020) 6649. https://doi.org/10.3390/app10196649
  23. K.B. Dasari, H. Cho, R. Jacimovic, G.-M. Sun, Y.-H. Yim, Chemical composition of Asian dust in Daejeon, Korea, during the spring season, ACS Earth Space Chem. 4 (8) (2020) 1227-1236. https://doi.org/10.1021/acsearthspacechem.9b00327
  24. R. Jacimovic, A. Trkov, P. Stegnar, Error in k0-NAA measurement due to temporal variation in the neutron flux in TRIGA Mark II reactor, J. Radioanal. Nucl. Chem. 294 (1) (2012) 155-161. https://doi.org/10.1007/s10967-011-1465-4