Acknowledgement
This study was supported by a research project (20191510301210, Development of Dismantling Technology for the Volume Reduction of Radioactively Contaminated Tanks) funded by the Korea Institute of Energy Technology Evaluation and Planning (KETEP, South Korea). The results of the SEM-EDS and XRD data analysis were obtained using UNIST Central Research Facilities (UCRF) equipment.
References
- A.B. Antoniazzi, W.T. Shmayda, T. Palma, Tritium outgassing from solid waste, in: Proceedings - Symposium on Fusion Engineering, 2, 1993, pp. 979-982, https://doi.org/10.1109/fusion.1993.518488.
- B.G. Blaylock, F.O. Hoffman MLF, Tritium in the Aquatic Environment, 1986, https://doi.org/10.1093/oxfordjournals.rpd.a079716.
- P.-S. Song, W.-K. Choi, B.-Y. Min, H.-I. Kim, C.-H. Jung, W.-Z. Oh, Characteristics of the decontamination by the melting of aluminum waste, J. Nucl. Fuel Cycle Waste Technol. 3 (2005) 95-104.
- B.-Y. Min, P.-S. Song, J.-H. Ahn, W.-K. Choi, C.-H. Jung, W.-Z. Oh, Y. Kang, Melting characteristics for radioactive aluminum wastes in electric arc furnace, J. Nucl. Fuel Cycle Waste Technol. 4 (2006) 33-40.
- P.E. Warwick, D. Kim, I.W. Croudace, J. Oh, Effective desorption of tritium from diverse solid matrices and its application to routine analysis of decommissioning materials, Anal. Chim. Acta 676 (2010) 93-102, https://doi.org/10.1016/j.aca.2010.07.017.
- H.R. Kim, M.J. Kang, G.S. Choi, An experiment on the radioactivity characteristics of the tritium contaminated metal sample, Ann. Nucl. Energy 38 (2011) 1074-1077, https://doi.org/10.1016/j.anucene.2011.01.004.
- A. Timothy, Andrzejak, E. Shafirovich, A. Varma, Ignition mechanism of nickel-coated aluminum particles, Combust. Flame 150 (2007) 60-70, https://doi.org/10.1016/j.combustflame.2007.03.004.
- A.P. Il, A.A. Gromov, G.V. Yablunovskii, Reactivity of aluminum powders A, Combust. Explos. Shock Waves 37 (2001) 418-422. https://doi.org/10.1023/A:1017997911181
- W.K. Choi, P.S. Song, B.Y. Min, H.I. Kim, C.H. Jung, W.Z. Oh, A State of the Art on the Technology for Melting and Recycling of the Radioactive Metallic Wastes, Korea Atomic Energy Research Institute, 2004. KAERI/AR-716/2004.
- S. Ekambaram, N. Murugan, Synthesis and characterization of aluminium alloy AA6061-alumina metal matrix composite, Int. J. Curr. Eng. Technol. 5 (2015) 3211-3216.
- H.C. Wu, H.J. Ou, H.C. Hsiao, T.S. Shih, Explosion characteristics of aluminum nanopowders, Aerosol Air Qual. Res. 10 (2010) 38-42, https://doi.org/10.4209/aaqr.2009.06.0043.
- M. Nishikawa, N. Nakashio, T. Shiraishi, S. Odoi, T. Takeishi, K. Kamimae, Tritium trapping capacity on metal surface, J. Nucl. Mater. 277 (2000) 99-105, https://doi.org/10.1016/S0022-3115(99)00133-6.
- L. Vichot, C. Boyer, T. Boissieux, Y. Losset, D. Pierrat, Organically bound tritium (OBT) for various plants in the vicinity of a continuous atmospheric tritium release, J. Environ. Radioact. 99 (2008) 1636-1643, https://doi.org/10.1016/j.jenvrad.2008.05.004.
- C. Cossonnet, A.M. Neiva Marques, R. Gurriaran, Experience acquired on environmental sample combustion for organically bound tritium measurement, Appl. Radiat. Isot. 67 (2009) 809-811, https://doi.org/10.1016/j.apradiso.2009.01.039.
- L. Du, J. Shan, Y.H. Ma, L. Wang, L.L. Qin, L. Pi, Y.S. Zeng, Z.H. Xia, G.H. Wang, W. Liu, An improved combustion apparatus for the determination of organically bound tritium in environmental samples, Appl. Radiat. Isot. 110 (2016) 218-223, https://doi.org/10.1016/j.apradiso.2015.12.031.
- J. Petrovic, G. Thomas, Reaction of Aluminum with Water to Produce Hydrogen-2010 Update, United States. https://doi.org/10.2172/1219359.
- Y.H. Oh, G.H. Lee, J.H. Park, C.K. Rhee, W.W. Kim, D.H. Kim, The effect of pH and temperature on the morphology of aluminum hydroxides formed by hydrolysis reaction, J. Kor. Powder Metall. Inst. 11 (2004) 118-123. https://doi.org/10.4150/KPMI.2004.11.2.118
- R. Schoen, C.E. Roberson, Structures of aluminum hydroxide and geochemical implications, Am. Mineral. J. Earth Planet. Mater. 55 (1970) 43-77.
- T. Sato, Thermal transformation of alumina trihydrate, bayerite, J. Appl. Chem. 12 (1962) 553-556, https://doi.org/10.1002/jctb.5010121206.
- J.T. Kloprogge, H.D. Ruan, R.L. Frost, Thermal decomposition of bauxite minerals: infrared emission spectroscopy of gibbsite, boehmite and diaspore, J. Mater. Sci. 37 (2002) 1121-1129. https://doi.org/10.1023/A:1014303119055
- K.J. Kang, J.W. Bae, H.R. Kim, Detection of tritium generated by proton exchange membrane electrolysis by optimization of electrolysis conditions, J. Radioanal. Nucl. Chem. 322 (2019) 1417-1421, https://doi.org/10.1007/s10967-019-06771-8.
- L.A. Currie, Limits for qualitative detection and quantitative determination: application to radiochemistry, Anal. Chem. 40 (1968) 586-593, https://doi.org/10.1021/ac60259a007.
- W.M. Abdellah, Optimization method to determine gross alpha-beta in water samples using liquid scintillation counter, J. Water Resour. Protect. (2013) 900-905, https://doi.org/10.4236/jwarp.2013.59092, 05.