• Title/Summary/Keyword: innovative technologies

Search Result 598, Processing Time 0.034 seconds

A scientometric, bibliometric, and thematic map analysis of hydraulic calcium silicate root canal sealers

  • Anastasios Katakidis;Konstantinos Kodonas;Anastasia Fardi;Christos Gogos
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.4
    • /
    • pp.41.1-41.17
    • /
    • 2023
  • Objectives: This scientometric and bibliometric analysis explored scientific publications related to hydraulic calcium silicate-based (HCSB) sealers used in endodontology, aiming to describe basic bibliometric indicators and analyze current research trends. Materials and Methods: A comprehensive search was conducted in Web of Science and Scopus using specific HCSB sealer and general endodontic-related terms. Basic research parameters were collected, including publication year, authorship, countries, institutions, journals, level of evidence, study design and topic of interest, title terms, author keywords, citation counts, and density. Results: In total, 498 articles published in 136 journals were retrieved for the period 2008-2023. Brazil was the leading country, and the universities of Bologna in Italy and Sao Paolo in Brazil were represented equally as leading institutions. The most frequently occurring keywords were "calcium silicate," "root canal sealer MTA-Fillapex," and "biocompatibility," while title terms such as "calcium," "sealers," "root," "canal," "silicate based," and "endodontic" occurred most often. According to the thematic map analysis, "solubility" appeared as a basic theme of concentrated research interest, and "single-cone technique" was identified as an emerging, inadequately developed theme. The co-occurrence analysis revealed 4 major clusters centered on sealers' biological and physicochemical properties, obturation techniques, retreatability, and adhesion. Conclusions: This analysis presents bibliographic features and outlines changing trends in HCSB sealer research. The research output is dominated by basic science articles scrutinizing the biological and specific physicochemical properties of commonly used HCSB sealers. Future research needs to be guided by studies with a high level of evidence that utilize innovative, sophisticated technologies.

The Effect of Chat GPT's e-Service Quality on Learning Performance through Perceived Value and Innovation (Chat GPT의 e-서비스 품질이 지각된 가치와 혁신성을 통해 학습성과에 미치는 영향)

  • Park Chol-Hoon;Cho Ara;Chae Young il
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.707-719
    • /
    • 2023
  • In the Fourth Industrial Revolution era, AI technologies, such as Chat GPT, have moved beyond assisting to actively analyzing data and providing solutions. This research assessed Chat GPT's e-service quality's influence on perceived value, innovativeness, and subsequent learning outcomes. Findings revealed that while ease of use and responsiveness weren't significant, safety and reliability were positively related to perceived value and innovativeness. A negative correlation was found between trustworthiness and perceived value. Users who saw Chat GPT as valuable and innovative experienced enhanced learning. The study emphasizes the need for guidelines in deploying Chat GPT academically. Given Chat GPT's recent introduction, further nuanced research is necessary.

A Study on the Development of Operator Training Methods for a Cloud-Based Vessel Traffic Service Platform (클라우드 기반 차세대 VTS 통합플랫폼 도입에 따른 교육과정 개발에 관한 연구)

  • Min Jung;Jeong-Ho Kim;Eun-Kyu Jang;Sek-Han Bae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.939-949
    • /
    • 2023
  • In South Korea, a cloud-based vessel traffic service (Cloud VTS) system integrating the fourth industrial revolution technologies such as cloud and AI is currently under development in contrast to the existing VTS systems. A pilot center for at Busan VTS is being established based on differentiated technology and operational programs. The roles of operators and maintenance personnel who operate the innovative Cloud VTS system must be redefined. Additionally, a demand exists for the development of new educational programs to ensure the smooth operation of the Cloud VTS. Therefore, this study introduces the development details of a Cloud VTS system and explores educational strategies aimed at operators and maintenance personnel to ensure its safe operation.

Vertiport Location Problem to Maximize Utilization Rate for Air Taxi (에어 택시 이용률 최대화를 위한 수직이착륙장 위치 결정 문제)

  • Gwang Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.5
    • /
    • pp.67-75
    • /
    • 2023
  • This paper deals with the operation of air taxis, which is one of the latest innovative technologies aimed at solving the issue of traffic congestion in cities. A key challenge for the successful introduction of the technology and efficient operation is a vertiport location problem. This paper employs a discrete choice model to calculate choice probabilities of transportation modes for each route, taking into account factors such as cost and travel time associated with different modes. Based on this probability, a mathematical formulation to maximize the utilization rate for air taxi is proposed. However, the proposed model is NP-hard, effective and efficient solution methodology is required. Compared to previous studies that simply proposed the optimization models, this study presents a solution methodology using the cross-entropy algorithm and confirms the effectiveness and efficiency of the algorith through numerical experiments. In addition to the academic excellence of the algorithm, it suggests that decision-making that considers actual data and air taxi utilization plans can increase the practial usability.

An Investigation of Interfacial Strength in Epoxy-based Solid Polymer Electrolytes for Structural Composite Batteries

  • Mohamad A. Raja;Su Hyun Lim;Doyun Jeon;Hyunsoo Hong;Inyeong Yang;Sanha Kim;Seong Su Kim
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.416-421
    • /
    • 2023
  • Multifunctional composite materials capable of both load-carrying and energy functions are promising innovative candidates for the advancement of contemporary technologies owing to their relative feasibility, cost-effectiveness, and optimized performance. Carbon fiber (CF)-based structural batteries utilize the graphitic inherent structure to enable the employment of carbon fibers as electrodes, current collectors, and reinforcement, while the matrix system is an ion-conduction and load transfer medium. Although it is possible to enhance performance through the modification of constituents, there remains a need for a systematic design methodology scheme to streamline the commercialization of structural batteries. In this work, a bi-phasic epoxy-based ionic liquid (IL) modified structural battery electrolyte (SBE) was developed via thermally initiated phase separation. The polymer's morphological, mechanical, and electrochemical characteristics were studied. In addition, the interfacial shear strength (IFSS) between CF/SBE was investigated via microdroplet tests. The results accentuated the significance of considering IFSS and matrix plasticity in designing composite structural batteries. This approach is expected to lay the foundation for realizing smart structures with optimized performance while minimizing the need for extensive trial and error, by paving the way for a streamlined computational design scheme in the future.

Blockchain and AI-based big data processing techniques for sustainable agricultural environments (지속가능한 농업 환경을 위한 블록체인과 AI 기반 빅 데이터 처리 기법)

  • Yoon-Su Jeong
    • Advanced Industrial SCIence
    • /
    • v.3 no.2
    • /
    • pp.17-22
    • /
    • 2024
  • Recently, as the ICT field has been used in various environments, it has become possible to analyze pests by crops, use robots when harvesting crops, and predict by big data by utilizing ICT technologies in a sustainable agricultural environment. However, in a sustainable agricultural environment, efforts to solve resource depletion, agricultural population decline, poverty increase, and environmental destruction are constantly being demanded. This paper proposes an artificial intelligence-based big data processing analysis method to reduce the production cost and increase the efficiency of crops based on a sustainable agricultural environment. The proposed technique strengthens the security and reliability of data by processing big data of crops combined with AI, and enables better decision-making and business value extraction. It can lead to innovative changes in various industries and fields and promote the development of data-oriented business models. During the experiment, the proposed technique gave an accurate answer to only a small amount of data, and at a farm site where it is difficult to tag the correct answer one by one, the performance similar to that of learning with a large amount of correct answer data (with an error rate within 0.05) was found.

Development of Digital Integrated Nursing Practice Education Platform (디지털 간호실습교육 플랫폼 개발)

  • Sun Kyung Kim;Hye ri Hwang;Su yeon Park;Su hee Moon
    • Journal of Practical Engineering Education
    • /
    • v.16 no.2
    • /
    • pp.167-177
    • /
    • 2024
  • In nursing education, there has been efforts for enhancing the quality, with a growing interest in the utilization of digital technologies. In clinical training of nursing curriculum, the emphasis on digital technology is pronounced, as it has the potential to offer learners effective and accessible educational experience while enabling the integrated management of individualized learning outcomes. This study developed a digital nursing education platform, allowing educators and learners to select functionalities based on the educational content and characteristics of the learning tools. Additionally, the user interface was designed to facilitate learners' accurate understanding and execution of assigned tasks and objectives. The detailed design and implementation process of the platform are elaborated and then the validation of its usefulness was provided based on feedback from ten educators who are responsible for diverse subjects. The high usability of the digital nursing practicum education platform was confirmed, with potential implications for significant improvements in learner performance. The potential of this digital platform is to lead to innovative shifts in educational methodologies within the field of integrative nursing education.

Novel dental anesthetic and associated devices: a scoping review

  • Kyung Hyuk Min;Zac Morse
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.24 no.3
    • /
    • pp.161-171
    • /
    • 2024
  • The efficient management of pain and discomfort is essential for successful dental treatment and patient compliance. Dental professionals are commonly evaluated for their ability to perform treatment with minimal patient discomfort. Despite advancements in traditional local dental anesthesia techniques, the pain and discomfort associated with injections remain a concern. This scoping review aims to provide a comprehensive overview of the literature on novel dental anesthetics and associated devices designed to alleviate pain and discomfort during dental procedures. The Joanna Briggs Institute and the Preferred Reporting Items for Systematic reviews and Meta-Analyses Extension for Scoping Reviews guidelines were used to prepare the review. Six databases and two sources of gray literature were searched. This review analyzed 107 sources from 1994 to 2023. Local anesthesia devices were grouped into computer-controlled local anesthetic delivery (CCLAD) systems, intraosseous anesthesia (IOA), vibratory stimulation devices, and electronic dental anesthesia (EDA). CCLAD systems, particularly the Wand and Single-Tooth Anesthesia, have been the most researched, with mixed results regarding their effectiveness in reducing pain during needle insertion compared to traditional syringes. However, CCLAD systems often demonstrated efficacy in reducing pain during anesthetic deposition, especially during palatal injections. Limited studies on IOA devices have reported effective pain alleviation. Vibrating devices have shown inconsistent results in terms of pain reduction, with some studies suggesting their primary benefit is during needle insertion rather than during the administration phase. EDA devices are effective in reducing discomfort but have found limited applicability. These findings suggest that the CCLAD systems reduce injection pain and discomfort. However, the evidence for other devices is limited and inconsistent. The development and research of innovative technologies for reducing dental pain and anxiety provides opportunities for interdisciplinary collaboration and improved patient care in dental practice.

Regional Innovation Clusters Policy in Germany: Focusing on the State Baden-Württemberg (독일의 지역 혁신클러스터 정책: 바덴-뷔르템베르크주를 중심으로)

  • Young-Jin Ahn;Ji-Yeung Gu
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.391-407
    • /
    • 2023
  • The state of Baden-Württemberg has one of the strongest regional economies in Germany and is known as one of the most innovative regions in both Germany and Europe. Clusters have played a central role in innovation strategies. The article analyzes the current cluster policy in Baden-Württemberg. The Baden-Württemberg cluster policy has systematically supported the development of clusters, cluster initiatives, and state-wide networks. It has also provided increasing support to regions in developing and implementing innovation and networking activities. The cluster policy has specifically focused on promoting collaborations across different industries and technologies, as well as implementing measures for internationalization. The goal of the Baden-Württemberg state cluster policy was to professionalize cluster management and improve its quality. The cluster policy in Baden-Württemberg has adopted a bottom-up approach and utilized various measures and instruments to promote dialogue. The cluster policy in Baden-Württemberg has established a dedicated cluster agency responsible for developing strategies and implementing individual measures.

Thin Film Nanocomposite Based Nanofiltration Membrane for Wastewater Treatment: Fabrication and Dyes Removal (폐수처리용 박막나노복합체 기반 나노여과막: 제조 및 염료제거)

  • Dohoon Park;Rajkumar Patel
    • Membrane Journal
    • /
    • v.34 no.3
    • /
    • pp.182-191
    • /
    • 2024
  • This review addresses the pressing need for effective wastewater treatment methodologies by exploring advanced thin-film nanocomposite (TFN) nanofiltration membranes aimed at efficient dye removal from industrial effluents. Utilizing insights from recent research, the review focuses on the fabrication of TFN membranes incorporating innovative materials such as nanocarbons, silica nanospheres, metal-organic frameworks (MOFs), and MoS2. The primary goals are to enhance dye removal efficiency, improve antifouling properties, and maintain high selectivity for dye/salt separation. By leveraging the distinct advantages of these nanomaterials-including large surface areas, mechanical robustness, and specific pollutant interaction capabilities-this review aims to overcome the limitations of current nanofiltration technologies and provide sustainable solutions for water treatment challenges.