• 제목/요약/키워드: inner displacement

검색결과 201건 처리시간 0.022초

오리피스 형상에 따른 발사관 내 부가추력 특성 연구 (Analysis of the Thrust Augmentation in the Canister with Baseplate Orifices)

  • 윤진영;임범수
    • 한국군사과학기술학회지
    • /
    • 제14권6호
    • /
    • pp.1067-1072
    • /
    • 2011
  • If the flow of booster gas which is exhausted to the rear part of a canister is properly restricted in the canister of a hot-launch system, the resultant pressure built up in the canister provides additional force to accelerate the missile to a required launch velocity. These thrust augmentation performances can be controlled through the configuration design of baseplate orifices. In this paper, the simple technique to analyze the thrust augmentation performances of baseplate orifices is suggested and the thrust augmentation characteristics by its various configurations are compared. According to the initial displacement of a missile, the inner pressure of a canister is measured from scaled cold flow tests, and the discharge coefficient of baseplate orifices is calculated. Then the thrust augmentation in a canister is simulated by applying these discharge characteristics to the AMESIM software for launch dynamics.

결합형 유한요소-경계요소기법을 사용한 PZT4 구형 쉘 형태의 히드로폰 시뮬레이션 (PZT4 spherical shell-typed hydrophone simulation using a coupled FE-BE method)

  • S.S. Jarng
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1998년도 춘계종합학술대회
    • /
    • pp.394-399
    • /
    • 1998
  • This paper describes the application of a coupled finite element-boundary element method to obtain the steady-state response of a hydrophone. The particular structure considered is a flooded piezoelectric spherical shell. The hydrophone is three-dimensionally simulated to transduce an incident plane acoustic pressure onto the outer surface of the sonar spherical shell to electrical potentials on inner and outer surfaces of the shell. The acoustic field formed from the scattered sound pressure is also simulated. And the displacement of the shell caused by the externally incident acosutic pressure is shown in temporal motion. The coupled FE-BE method is described in detail.

  • PDF

Shake table responses of an RC low-rise building model strengthened with buckling restrained braces at ground story

  • Lee, Han Seon;Lee, Kyung Bo;Hwang, Kyung Ran;Cho, Chang Seok
    • Earthquakes and Structures
    • /
    • 제5권6호
    • /
    • pp.703-731
    • /
    • 2013
  • In order to verify the applicability of buckling restrained braces (BRB's) and fiber reinforced polymer (FRP) sheets to the seismic strengthening of a low-rise RC building having the irregularities of a soft/weak story and torsion at the ground story, a series of earthquake simulation tests were conducted on a 1:5 scale RC building model before, and after, the strengthening, and these test results are compared and analyzed, to check the effectiveness of the strengthening. Based on the investigations, the following conclusions are made: (1) The BRB's revealed significant slips at the joint with the existing RC beam, up-lifts of columns from RC foundations and displacements due to the flexibility of foundations, and final failure due to the buckling and fracture of base joint angles. The lateral stiffness appeared to be, thereby, as low as one seventh of the intended value, which led to a large yield displacement and, therefore, the BRB's could not dissipate seismic input energy as desired within the range of anticipated displacements. (2) Although the strengthened model did not behave as desired, great enhancement in earthquake resistance was achieved through an approximate 50% increase in the lateral resistance of the wall, due to the axial constraint by the peripheral BRB frames. Finally, (3) whereas in the original model, base torsion was resisted by both the inner core walls and the peripheral frames, the strengthened model resisted most of the base torsion with the peripheral frames, after yielding of the inner core walls, and represented dual values of torsion stiffness, depending on the yielding of core walls.

변두께를 갖는 두꺼운 환형판의 삼차원적 리츠방법에 의한 진동수와 모드형상 (Frequencies and Mode Shapes of Annular Plates tilth Variable Thickness by the Ritz Method in Three-Dimensional Analysis)

  • 양근혁;강재훈
    • 한국소음진동공학회논문집
    • /
    • 제11권5호
    • /
    • pp.89-100
    • /
    • 2001
  • The Ritz method Is applied In a three-dimensional (3-D) analysis to obtain accurate frequencies for thick. linearly tapered. annular plates. The method is formulated for annular plates haying any combination of free or fixed boundaries at both Inner and outer edges. Admissible functions for the three displacement components are chosen as trigonometric functions in the circumferential co-ordinate. and a1gebraic polynomials in the radial and thickness co-ordinates. Upper bound convergence of the non-dimensional frequencies to the exact values within at least four significant figures is demonstrated. Comparisons of results for annular plates with linearly varying thickness are made with ones obtained by others using 2-D classical thin place theory. Extensive and accurate ( four significant figures ) frequencies are presented 7or completely free. thick, linearly tapered annular plates haying ratios of average place thickness to difference between outer radius (a) and inner radius (b) radios (h$_{m}$/L) of 0.1 and 0.2 for b/L=0.2 and 0.5. All 3-D modes are included in the analyses : e.g., flexural, thickness-shear. In-plane stretching, and torsional. Because frequency data liven is exact 7o a\ulcorner least four digits. It is benchmark data against which the results from other methods (e.g.. 2-D 7hick plate theory, finite element methods. finite difference methods) and may be compared. Throughout this work, Poisson\`s ratio $\upsilon$ is fixed at 0.3 for numerical calculations.s.

  • PDF

The gob-side entry retaining with the high-water filling material in Xin'an Coal Mine

  • Li, Tan;Chen, Guangbo;Qin, Zhongcheng;Li, Qinghai;Cao, Bin;Liu, Yongle
    • Geomechanics and Engineering
    • /
    • 제22권6호
    • /
    • pp.541-552
    • /
    • 2020
  • With the increasing tension of current coal resources and the increasing depth of coal mining, the gob-side entry retaining technology has become a preferred coal mining method in underground coal mines. Among them, the technology of the gob-side entry retaining with the high-water filling material can not only improve the recovery rate of coal resources, but also reduce the amount of roadway excavation. In this paper, based on the characteristics of the high-water filling material, the technological process of gob-side entry retaining with the high-water filling material is introduced. The early and late stress states of the filling body formed by the high-water filling materials are analyzed and studied. Taking the 8th floor No.3 working face of Xin'an coal mine as engineering background, the stress and displacement of surrounding rock of roadway with different filling body width are analyzed through the FLAC3D numerical simulation software. As the filling body width increases, the supporting ability of the filling body increases and the deformation of the surrounding rock decreases. According to the theoretical calculation and numerical simulation of the filling body width, the filling body width is finally determined to be 3.5m. Through the field observation, the deformation of the surrounding rock of the roadway is within the reasonable range. It is concluded that the gob-side entry retaining with the high-water filling material can control the deformation of the surrounding rock, which provides a reference for gob-side entry retaining technology with similar geological conditions.

마찰스프링의 주퇴복좌장치 적용성 연구 (Application Study of Recoil Mechanism using Friction Springs)

  • 차기업;김학인;조창기
    • 한국정밀공학회지
    • /
    • 제29권3호
    • /
    • pp.324-333
    • /
    • 2012
  • The conventional medium and large caliber gun, in general, utilize the hydro-pneumatic recoil mechanism to control the firing impulse and to return to the battery position. However, this kind of mechanism may cause the problems like the leakages and the property changes in oil and gas due to the temperature variations between low and high temperatures. Accordingly, the friction spring mechanism has recently been researched as an alternative system. The friction spring mechanism consists of a set of closed inner and outer rings with the concentric tapered contact surfaces assembled in the columnar form, and can only be used under the compression load. When the spring column is axially loaded, the tapered surfaces become overlapped, causing the outer rings to expand while the inner rings are being contracted in diameter allowing an axial displacement. Because of friction between tapered contact surfaces, much higher spring stiffness is obtained on the stroke at the increase in load than the stroke at the decrease. In this paper, the dynamic equations regarding the friction spring system and the design approach have been investigated. It is also tried for a dynamic model representing the recoil motion and the friction spring forces. And the model has been proved from firing test using a gun system with friction springs. All the results show that the recoil mechanism using friction springs can substitute for the classic hydro-pneumatic recoil system.

THE DEVELOPMENT OF A NEW NO-CONTACT METHOD TO MEASURE THE MECHANICAL PROPERTIES OF SKIN: NEW AGE-RELATED PARAMETERS

  • Tsutomu Fujimura;Osamu Osanai;Shigeru Moriwaki;Syuichi Akazaki;Kim, ihiko-Hori;Yoshinori Takema
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 2003년도 IFSCC Conference Proceeding Book II
    • /
    • pp.529-543
    • /
    • 2003
  • Real-time measurements of skin movement induced by air blown on the surface was measured with time. We investigated age-related changes in displacement of the skin surface on the face or the inner upper arm caused by air on 98 Japanese women volunteers aged from 10 to 70 years old. The maximum distance (the denting state) that the skin moved reached 2-5 mm within 10-15 msec on the cheek skin. After that, the skin generally recovered to the original state within 40-50 msec. The maximum speed of movement was 0.5 m/sec and the recovery speed was about 0.25 m/sec on the cheek skin. Significant changes with age were not observed in the denting state, but a significant correlation with age was observed in the recovery state. For example, the maximum recovery speed decreased significantly with age (p=-0.568, p<0.001) and the time required for recovery increased significantly with age (p=0.561, p<0.001). Although the inner upper arm also showed similar results to a cheek, a few parameters were different. This apparatus is a more practical macroscopic system for evaluating skin mechanical properties without contact. This apparatus is effective not only for measuring the mechanical properties of facial skin but also of body skin, such as swelling or sagging of body parts.

  • PDF

Fabrication and Vibration Characterization of a Partially Etched-type Artificial Basilar Membrane

  • Kang, Hanmi;Jung, Youngdo;Kwak, Jun-Hyuk;Song, Kyungjun;Kong, Seong Ho;Hur, Shin
    • 센서학회지
    • /
    • 제24권6호
    • /
    • pp.373-378
    • /
    • 2015
  • The structure of the human ear is divided into the outer ear, the middle ear, and the inner ear. The inner ear includes the cochlea that plays a very important role in hearing. Recently, the development of an artificial cochlear device for the hearing impaired with cochlear damage has been actively researched. Research has been carried out on the biomimetic piezoelectric thin film ABM (Artificial Basilar Membrane) in particular. In an effort to improve the frequency separation performance of the existing piezoelectric thin film ABM, this paper presents the design, fabrication, and characterization of the production and performance of a partially etched-type ABM material. $O_2$ plasma etching equipment was used to partially etch a piezoelectric thin film ABM to make it more flexible. The mechanical-behavior characterization of the manufactured partially etched-type ABM showed that the overall separation frequency range shifted to a lower frequency range more suitable for audible frequency bandwidths and it displayed an improved frequency separation performance. In addition, the maximum magnitude of the vibration displacement at the first local resonant frequency was enhanced by three times from 38 nm to 112 nm. It is expected that the newly designed, partially etched-type ABM will improve the issue of cross-talk between nearby electrodes and that the manufactured partially etched-type ABM will be utilized for next-generation ABM research.

Experimental and numerical study on mechanical behaviour of grouted splices with light-weight sleeves

  • Quanwei Liu;Tao Wu;Zhengyi Kong;Xi Liu;Ran Chen;Kangxiang Hu;Tengfei Xiang;Yingkang Zhou
    • Steel and Composite Structures
    • /
    • 제52권2호
    • /
    • pp.165-182
    • /
    • 2024
  • Grouted sleeve splice (GSS) is an effective type of connection applied in the precast concrete structures as it has the advantages of rapidly assembly and reliable strength. To decrease the weight and cost of vertical rebar connection in precast shear walls, a light-weight sleeve is designed according to the thick-cylinder theory. Mechanical behaviour of the light-weighted GSS is investigated through experimental analysis. Two failure modes, such as rebar fracture failure and rebar pull-out failure, are found. The load-displacement curves exhibit four different stages: elastic stage, yield stage, strengthening stage, and necking stage. The bond strength between the rebar and the grout increases gradually from outer position to inner position of the sleeve, and it reaches the maximum value at the centre of the anchorage length. A finite element model predicting the mechanical properties of the light-weighted GSS is developed based on the Concrete Damage Plasticity (CDP) model and the Brittle Cracking (BC) model. The effect of the rebar anchorage length is significant, while the increase of the thickness of sleeve and the grout strength are not very effective. A model for estimating ultimate load, including factors of inner diameter of sleeves, anchorage length, and rebar diameter, is proposed. The proposed model shows good agreement with various test data.

유한요소법에 의한 하악제 1 대구치의 Cervical Traction의 효과에 관한 역학적 연구 (A FINITE ELEMENT ANALYSIS OF THE DISPLACEMENT AND STRESS DISTRIBUTION OF HUMAN DRY MANDIBLE DURING THE MANDIBULAR FIRST MOLAR CERVICAL TRACTION)

  • 안의영;정규림
    • 대한치과교정학회지
    • /
    • 제19권1호
    • /
    • pp.45-59
    • /
    • 1989
  • This study was undertaken to analyze the displacement and stress distribution in the mandible according to the pulling directions during mandibular first molar cervical traction after mandibular second molar extraction. The 3-dimensional finite element method(FEM) was used for a mathematical model composed of 594 elements and 1019 nodes. An orthodontic force, 450 gm, was applied to the each mandibular first molar in parallel, and below the occlusal plane by $7^{\circ}\;and\;25^{\circ}$ and meet the midsagittal plane by $40^{\circ}$ toward posterior direction. The results were as follows: 1. Mandibular teeth were displaced in more downward, posterior and lateral direction. Especially high stress was noted in case of parallel pull than in case of below the occlusal plane by $7^{\circ}\;and\;25^{\circ}$. 2. Mandibular first molar was moved bodily. 3. Generally, alveolar bone, mandibular body, ascending ramus and mandibular angle portion were displaced in downward, posterior and lateral direction. But coronoid process was displaced in downward, forward and lateral direction, and anterior and inner middle portion of condyle head and neck were displaced in downward, forward and medial direction, and posterior and outer middle portion of condyle head and neck were displaced in upward, forward and medial direction. 4. Maximum stress was observed at the condyle head and neck portion. With steeper direction of force, condyle head and neck showed more stress than parallel relation to the occlusal plane.

  • PDF