DOI QR코드

DOI QR Code

Experimental and numerical study on mechanical behaviour of grouted splices with light-weight sleeves

  • Quanwei Liu (Department of Civil Engineering, Anhui University of Technology) ;
  • Tao Wu (Department of Civil Engineering, Chang'an University) ;
  • Zhengyi Kong (Institute for Sustainable Buit Environment, Heriot-Watt University) ;
  • Xi Liu (Department of Civil Engineering, Chang'an University) ;
  • Ran Chen (Department of Civil Engineering, Chang'an University) ;
  • Kangxiang Hu (Department of Civil Engineering, Anhui University of Technology) ;
  • Tengfei Xiang (Department of Civil Engineering, Anhui University of Technology) ;
  • Yingkang Zhou (Department of Civil Engineering, Anhui University of Technology)
  • Received : 2023.09.15
  • Accepted : 2024.06.24
  • Published : 2024.07.25

Abstract

Grouted sleeve splice (GSS) is an effective type of connection applied in the precast concrete structures as it has the advantages of rapidly assembly and reliable strength. To decrease the weight and cost of vertical rebar connection in precast shear walls, a light-weight sleeve is designed according to the thick-cylinder theory. Mechanical behaviour of the light-weighted GSS is investigated through experimental analysis. Two failure modes, such as rebar fracture failure and rebar pull-out failure, are found. The load-displacement curves exhibit four different stages: elastic stage, yield stage, strengthening stage, and necking stage. The bond strength between the rebar and the grout increases gradually from outer position to inner position of the sleeve, and it reaches the maximum value at the centre of the anchorage length. A finite element model predicting the mechanical properties of the light-weighted GSS is developed based on the Concrete Damage Plasticity (CDP) model and the Brittle Cracking (BC) model. The effect of the rebar anchorage length is significant, while the increase of the thickness of sleeve and the grout strength are not very effective. A model for estimating ultimate load, including factors of inner diameter of sleeves, anchorage length, and rebar diameter, is proposed. The proposed model shows good agreement with various test data.

Keywords

Acknowledgement

The authors appreciate the support from Anhui University of Technology Foundation (No. QZ202015), Anhui Province University Research Program Project of China (No. 2023AH051086), Anhui Provincial Natural Science Foundation of China (No. 2108085QD168) and National Natural Science Foundation of China (No. 52078042).

References

  1. Alias, A., Sapawi, F., Kusbiantoro, A., Zubir, M.A. and Abd Rahman, A.B. (2014), "Performance of grouted splice sleeve connector under tensile load", J. Mech. Eng. Sci., 7, 1094-1102. https://doi.org/10.15282/jmes.7.2014.8.0106.
  2. Ameli, M.J., Parks, J.E., Brown, D.N. and Pantelides, C.P. (2015), "Seismic evaluation of grouted splice sleeve connections for reinforced precast concrete column-to-cap beam joints in accelerated bridge construction", PCI J., 60(2), 80-103. https://doi.org/10.15554/pcij.03012015.80.103.
  3. Chen, J., Xu, C., Liu, H., Zhang, Z. and Du, X. (2022), "Numerical study on the influence of geometric parameters on mechanical properties of Tapered Head Grouted Sleeve joints", Case Studies Construct. Mater., 17, e01671. https://doi.org/10.1016/j.cscm.2022.e01671.
  4. Einea, A., Yamane, T., Tadros, M.K. (1995), "Grout-filled pipe splices for precast concrete construction", PCI J., 40, 82-93. https://doi.org/10.15554/pcij.01011995.82.93.
  5. Einea, A., Yehia, S. and Tadros, M.K. (1999), "Lap splices in confined concrete", Struct. J., 96, 947-955. https://doi.org/10.14359/769.
  6. EN 1990 (2002), Eurocode-Basis of Structural Design. European Committee for Standardization, Brussels, Belgium. https://www.phd.eng.br/wpcontent/uploads/2015/12/en.1990.2002.pdf.
  7. Fang, Z.C., Jiang, H.B., Chen, G.F., Dong, X.T. and Shao, T.F. (2020), "Behavior of grouped stud shear connectors between precast high-strength concrete slabs and steel beams", Steel Compos. Struct., 34(6), 837-851.
  8. GB/T 17671-1999 (1999), Method of Testing Cements-Determination of Strength. Chinese Standard Code, Beijing, China. (in Chinese)
  9. Guo, Z.H. and Shi, X.D. (2003), Reinforced Concrete Theory and Analyse, Press of Tsinghua University: Beijing, China. (in Chinese)
  10. Hayashi, Y., Miwake, I. and Nakatsuka, T. (1997), "Cracks and deformation occured in grout-filled coupling sleeve of electric resistance welded steel tube", Concrete Res. Technol., 8, 179-187. https://doi.org/10.3151/crt1990.8.1_179.
  11. Hayshi, Y., Shimizu, R., Nakatsuka, T. and Suzuki, K. (1994), "Bond stress-slip characteristic of reinforcing bars in grout-filled coupling steel sleeves", J. Struct. Construct. Eng., 10(2), 27-35. https://doi.org/10.3130/aijs.59.131_3.
  12. Henin, E. and Morcous, G. (2015), "Non-proprietary bar splice sleeve for precast concrete construction", Eng. Struct., 83, 154-162. https://doi.org/10.1016/j.engstruct.2014.10.045.
  13. Hosseini, S.J.A., Rahman, A.B.A., Osman, M.H., Saim, A. and Adnan, A. (2015), "Bond behavior of spirally confined splice of deformed bars in grout", Construct. Build. Mater., 80, 180-194. https://doi.org/10.1016/j.conbuildmat.2014.12.097. https://doi.org/10.12989/scs.2020.34.6.837.
  14. Huang, Y., Zhu, Z.G., Naito, C.J. and Yi, W.J. (2017), "Tensile behavior of half grouted sleeve connections: Experimental study and analytical modeling", Construct. Build. Mater., 152, 96-104. https://doi.org/10.1016/j.conbuildmat.2017.06.154.
  15. Jansson, P.O. (2008), "Evaluation of grout-filled mechanical splices for precast concrete construction", Michigan Department of Transportation MDOT. http://www.mi chigan.gov/documents/mdot/MDOT_Research_Report_R1512_234541_7.pdf
  16. Jiang, H.B., Fang, H.Z., Wu, J.P., Fang, Z.C., Fang, S. and Chen, G.F. (2022), "Push-out tests on demountable high-strength friction-grip bolt shear connectors in steel-precast UHPC composite beams for accelerated bridge construction", Steel Compos. Struct., 45(6), 797-818. https://doi.org/10.12989/scs.2022.45.6.797.
  17. Jiang, S., Guo, X., Xiong, Z., Cai, Y. and Zhu, S. (2017), "Experimental studies on behavior of tubular T-joints reinforced with grouted sleeve", Steel Compos. Struct., 23(5), 585-596. https://doi.org/10.12989/scs.2017.23.5.585.
  18. Kashkoli, M.D., Tahan, K.N. and Nejad, M.Z. (2019), "Creep damage and life assessment of thick cylindrical pressure vessels with variable thickness made of 304L austenitic stainless steel", Steel Compos. Struct., 32(6), 701-715. https://doi.org/10.12989/scs.2019.32.6.701.
  19. Kim, H.K. (2008), "Confining effect of mortar-filled steel pipe splice", Architect. Res., 10, 27-35. http://www.koreascience.or.kr/article/JAKO200830335057319.pdf.
  20. Kim, H.K. and Ah, B.I. (2003), "Bond strength of grout-filled splice sleeve considering effects of confinement", J. Korea Concrete Institute, 15, 615-622. https://doi.org/10.4334/JKCI.2003.15.4.615.
  21. Kim, H.K., Ahn, B.I. and Nam, J.H. (2001), "Structural performance of high strength grout-filled splice sleeve system", J. Korea Concrete Institute, 13, 516-524. https://doi.org/10.22636/JKCI.2001.13.5.516.
  22. Koushfar, K., Rahman, A.B.A., Ahmad, Y. and Hanim Osman, M. (2014), "Bond behavior of the reinforcement bar in glass fiber-reinforced polymer connector", Gradevinar, 66(04.), 301-310. https://doi.org/10.14256/JCE.913.2013.
  23. Kurama, Y.C., Sritharan, S., Fleischman, R.B., Restrepo, J.I., Henry, R.S., Cleland, N.M. and Bonelli, P. (2018), "Seismic-resistant precast concrete structures: State of the art", J. Struct. Eng., 144(4), 03118001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001972.
  24. Lamport, W.B., Jirsa, J.O. and Yura, J.A. (1991), "Strength and behavior of grouted pile - to - sleeve connections", J. Struct. Eng., 117, 2477-2498. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:8(2477).
  25. Lee, L., Yi, W. and Lee, Y. (1997), "Study on bar connection with high strength mortar grout-filled steel pipe", J. Architect. Institute Korea, 13(8), 147-153. https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE00360473.
  26. Lin, F. and Wu, X. (2016), "Mechanical performance and stress-strain relationships for grouted splices under tensile and cyclic loadings", Int. J. Concrete Struct. Mater., 10(4), 435-450. https://doi.org/10.1007/s40069-016-0156-5.
  27. Ling, J.H., Liew, Y.F., Leong, W.K. and Sia, H.T. (2017), Modelling the Response of Tapered Head Sleeve Connection Under Tensile Load Using Finite Element Method. https://www.sid.ir/FileServer/JE/103820170510.pdf.
  28. Ling, J.H., Rahman, A.B.A., Ibrahim, I.S. and Hamid, Z.A. (2012), "Behaviour of grouted pipe splice under incremental tensile load", Construct. Build. Mater., 33, 90-98. https://doi.org/10.1016/j.conbuildmat.2012.02.001.
  29. Ling, J.H., Rahman, A.B.A., Ibrahim, I.S. and Hamid, Z.A. (2012), "Behaviour of grouted pipe splice under incremental tensile load", Construct. Build. Mater., 33, 90-98. https://doi.org/10.1016/j.conbuildmat.2012.02.001.
  30. Ling, J.H., Rahman, A.B.A., Ibrahim, I.S. and Hamid, Z.A. (2016), "Tensile capacity of grouted splice sleeves", Eng. Struct., 111, 285-296. https://doi.org/10.1016/j.engstruct.2015.12.023.
  31. Liu, Q., Liu, X., Chen, R., Kong, Z. and Xiang, T. (2023), "Experimental study on anchoring performance of short-lapped-rebar splices with pre-set holes and spiral hoops, Metals, 13(3), 530. https://doi.org/10.3390/met13030530.
  32. Qu, X., Xie, Y., Sun, Y., Sun, G., Deng, Y. and Qin, C. (2023), "Study of mechanical properties of grouting defective sleeve", Structures, 48, 1128-1140. https://doi.org/10.1016/j.istruc.2023.01.035.
  33. Rahman, A.B.A., Yoon, L.H., Ibrahim, I.S., Mohamed, R.N., Mohammad, S. and Saim, A.A. (2015), "Performance of grouted splice sleeves with tapered bars under axial tension", Appl. Mech. Mater., 789, 1176-1180. https://doi.org/10.4028/www.scientific.net/AMM.789-790.1176.
  34. Sah, T.P., Lacey, A.W., Hao, H. and Chen, W. (2024), "Prefabricated concrete sandwich and other lightweight wall panels for sustainable building construction: State-of-the-Art Review", J. Build. Eng., 109391. https://doi.org/10.1016/j.jobe.2024.109391.
  35. Sayadi, A.A., Rahman, A.B.A., Jumaat, M.Z.B., Alengaram, U.J. and Ahmad, S. (2014), "The relationship between interlocking mechanism and bond strength in elastic and inelastic segment of splice sleeve", Construct. Build. Mater., 55, 227-237. https://doi.org/10.1016/j.conbuildmat.2014.01.020.
  36. Sayadi, A.A., Rahman, A.B.A., Sayadi, A., Bahmani, M. and Shahryari, L. (2015), "Effective of elastic and inelastic zone on behavior of glass fiber reinforced polymer splice sleeve", Construct. Build. Mater., 80, 38-47. https://doi.org/10.1016/j.conbuildmat.2015.01.064.
  37. Shokrzadeh, M.R., Nateghi-Alahi, F., Mansoori, M.R. and Javadi, P. (2023), "The improvement of the threaded-based mechanical splice by modifying the threaded system: Study of techniques cold rolling and rotating friction welding", J. Build. Eng., 80, 107964. https://doi.org/10.1016/j.jobe.2023.107964.
  38. Tao, W., Quan-wei, L.I.U., Ran, C. and Xi, L.I.U. (2017), "Experimental study and stress analysis of mechanical performance of grouted sleeve splice", Eng. Mech., 34(10), 68-75. https://doi.org/10.6052/j.issn.1000-4750.2016.05.0357.
  39. Tibbetts, A.J., Oliva, M.G. and Bank, L.C. (2009), "Durable fiber reinforced polymer bar splice connections for precast concrete structures", Compos. Ploycon, 1-12. http://dev1.kreysler.com/information/specifications/specsresources/durable_fiber_rienforced_polymer_.bar_splice_connections_for_precast_concrete_structures.pdf
  40. Wu, X., Zhang, X., Zhang, Q., Zhang, D., Yang, X., Qiu, F. and Kang, T.H.K. (2022), "Design and behavior of 160 m-tall post-tensioned precast concrete-steel hybrid wind turbine tower", Steel Compos. Struct., 44(3), 407. https://doi.org/10.12989/scs.2022.44.3.393.
  41. Xu, Y.L. (1990), "Experimental study of anchorage properties for deformed bars in concrete", Ph.D. Dissertation, Tsinghua University, Beijing, China. (in Chinese)
  42. Xu, Y.L., Shen, W.D. and Wang, H. (1994), "An experimental study of bond-anchorage properties of bars in concrete", J. Build. Struct., 15, http://www.jzjgxb.com/EN/Y1994/V15/I03/0.
  43. Yang, J.F., Yang, C., Su, M.Z. and Lian, M. (2016), "Stress concentration factors test of reinforced concrete-filled tubular Y-joints under in-plane bending", Steel Comp. Struct., 22(1), 203-216. https://doi.org/10.12989/scs.2016.22.1.203.
  44. Yee, A.A. and Eng, H.D. (2001), "Structural and economic benefits of precast/prestressed concrete construction", PCI J., 46, 34-42. https://doi.org/10.15554/pcij.07012001.34.42.
  45. Yu, Q., Sun, J., Xu, Z., Li, L., Zhang, Z. and Yu, S. (2019), "Mechanical analysis of grouted sleeve lapping connector", Appl. Sci., 9(22), 4867. https://doi.org/10.3390/app9224867.
  46. Zhao, Y., Lin, H., Wu, K. and Jin, W. (2013), "Bond behaviour of normal/recycled concrete and corroded steel bars", Construct. Build. Mater., 48, 348-359. https://doi.org/10.1016/j.conbuildmat.2013.06.091.
  47. Zheng, Y., Guo, Z., Guan, D. and Zhang, X. (2018), "Parametric study on a novel grouted rolling pipe splice for precast concrete construction", Construct. Build. Mater., 166, 452-463. https://doi.org/10.1016/j.conbuildmat.2018.01.182.