• 제목/요약/키워드: injection molded

검색결과 493건 처리시간 0.022초

유압회로를 기반으로 한 사출성형기의 해석모델 개발 및 공정 별 특성검토 (Development of Injection Molding Machine Simulation Model Based on Hydraulic Circuit, and Operating Characteristic Examination)

  • 노대경;장주섭;어승룡
    • 한국자동차공학회논문집
    • /
    • 제22권2호
    • /
    • pp.7-16
    • /
    • 2014
  • Vehicle industry is developing research for producing high quality injection molded product. The main objective of this study is providing information about hydraulic system for researchers who are involved in the other fields, not hydraulic field. Another objective is developing hydraulic circuit simulation model which analyzes the cause of several destabilizing elements related to quality of injection molded products. Injection molded product consists of a lot of hydraulic parts, and there are many nonlinear facts for dynamic behavior. So, we used 'SimulationX' which is specialized in hydraulic system for developing simulation model.

나노초 UV 레이저를 이용한 분말사출 부품의 미세기공 (Micromachining of powder injection molded parts using ns UV laser)

  • 안대환;박성진;권영삼;김동식
    • 한국레이저가공학회지
    • /
    • 제13권1호
    • /
    • pp.1-5
    • /
    • 2010
  • ln this work, the feasibility of using a UV laser for micromachining of powder injection molded parts is examined experimentally. The results, although preliminary, indicate that microfabrication of various parts by laser micromachining of the injection molded parts and then sintering is promising. Particularly, micromachining of a mixture composed of stainless steel particles and polyrner binders was studied using a KrF excimer laser.

  • PDF

QUALITY STABILIZATION OF BALL SEAT IN AUTOMOTIVE SUSPENSION PARTS

  • KANG T.-H.;KIM I.-K.;KIM Y.-S.
    • International Journal of Automotive Technology
    • /
    • 제6권5호
    • /
    • pp.507-511
    • /
    • 2005
  • Recently, many solution have been suggested to development of plastic products. Among many manufacturing technologies for plastic parts, the injection molding process is very attractive because of its low production cost and short cycle time. In this paper, the plastic ball seat of a ball joint, one of the essential components for automotive suspension or steering system, was studied to enhance its mechanical performance and durability by using PA66 that is reinforced polymeric plastic resin. But ball seat has some trouble in manufacture process. And strength of molded part is not enough to use. For the quality stabilization and reliability of injection molded parts, we designed the mold cavities through analytical simulation software and tested the mechanical performance for the injection molded ball-seat parts. After modification, tensile strength increases by about $13.5\%$. Strength and quality stabilization is improved.

반응표면 분석법에 의한 사출공정 및 품질 모니터링에 관한 연구 (A Study on Injection Molding Process and Quality Monitoring by Response Surface Analysis)

  • 민병현;이경돈;우병길
    • 산업공학
    • /
    • 제9권1호
    • /
    • pp.13-24
    • /
    • 1996
  • Quality of injection molded parts is dependent on both mold design and processing conditions. From the mold design point of view, an optimal shrinkage should be used to compensate the shrinkage of molded parts. From the processing point of view, it is important to analyze the priority of processing conditions because a number processing conditions affect the quality of molded parts. Processing analysis employing the design of experiment was performed, and the shrinkage of molded part was considered as a characteristic parameter to improve the quality. As the result of the analysis of variance on SN ratio of a characteristic value, injection speed and bolding pressure were selected as two effective process parameters. Regression analysis on shrinkage and processing conditions was carried out, and an optimal processing condition was obtained by the response surface analysis. Shrinkage at the optimal condition could be used to reduce the number of try-cut at the step of mold making. The ranges of indirect control parameter, such as maximum cavity pressure or weight, measured at the optimal processing condition were used for monitoring the quality of molded parts in process.

  • PDF

금형온도제어에 대한 실천공학모형 연구 (A Study on Practical Engineering Model for Tool Temperature Control)

  • 신주경
    • 실천공학교육논문지
    • /
    • 제10권2호
    • /
    • pp.89-94
    • /
    • 2018
  • 사출 성형에서 금형 온도는 성형품의 품질에 큰 영향을 준다. 어느 정도의 온도가 적정한가는 성형 재료, 성형품에서 요구되는 품질에 의해서 결정되고 중요한 것은 그 온도가 안정적이어야 한다. 먼저 그 수지에 적합한 금형 온도 조건 범위 내에서 성형품이 요구하는 품질에 맞는 금형 온도를 설정해야 한다. 즉, 성형품의 표면 광택, 성형 사이클의 단축, 변형 방지, 수축 및 수지 흐름의 용이성 등의 중요성에 의해서 금형 온도는 변화한다. 실질적인 금형 기술 향상을 위해서 사출 금형을 설계하고 제작하는 산업체에서 적용할 수 있는 온도 제어에 대한 애로 기술 과정의 훈련 모형을 제시하고자 한다.

국부 금형가열에 조건에 따른 사출성형품 웰드라인의 강도 고찰 (Investigation of Weldline Strength with Various Heating Conditions)

  • 박근;손동휘;서영수
    • 한국정밀공학회지
    • /
    • 제27권1호
    • /
    • pp.105-112
    • /
    • 2010
  • Weldlines are generated during the injection molding process when two or more melt flows are brought into contact. The weldlines are unavoidable in the cases of presence of holes or inserts, multi-gated delivery systems, significant thickness change, etc. At the welded contact region, a 'V'-shaped notch is formed on the surface of the molded part. This 'V'-notch deteriorates not only surface appearance but also mechanical strength of the molded part. To eliminate or reduce weldlines so as to improve the weldline strength, the mold temperature at the corresponding weld locations should be maintained higher than the glass transition temperature of the resin material. The present study implements high-frequency induction heating in order to rapidly raise mold surface temperature without a significant increase in cycle time. This induction heating enables to local mold heating so as to eliminate or reduce weldlines in an injection-molded plastic part. The effect of induction heating conditions on the weldline strength and surface appearance of an injection-molded part is investigated.

Prediction and Measurement of Residual Stresses in Injection Molded Parts

  • Kwon, Young-Il;Kang, Tae-Jin;Chung, Kwansoo;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • 제2권4호
    • /
    • pp.203-211
    • /
    • 2001
  • Residual stresses were predicted by a flow analysis in the mold cavity and residual stress distribution in the injection molded product was measured. Flow field was analyzed by the hybrid FEM/FDM method, using the Hele Shaw approximation. The Modified Cross model was used to determine the dependence of the viscosity on the temperature and the shear rate. The specific volume of the polymer melt which varies with the pressure and temperature fields was calculated by the Tait\`s state equation. Flow analysis results such as pressure, temperature, and the location of the liquid-solid interface were used as the input of the stress analysis. In order to calculate more accurate gap-wise temperature field, a coordinate transformation technique was used. The residual stress distribution in the gap-wise temperature field, a coordinate transformation technique was used. The residual stress distribution in the gap-wise direction was predicted in two cases, the free quenching, under the assumption that the shrinkage of the injection molded product occurs within the mold cavity and that the solid polymer is elastic. Effects of the initial flow rate, packing pressure, and mold temperature on the residual stress distribution was discussed. Experimental results were also obtained by the layer removal method for molded polypropylene.

  • PDF

인공신경망을 통한 사출 성형조건의 최적화 예측 및 특성 선택에 관한 연구 (A study on the prediction of optimized injection molding conditions and the feature selection using the Artificial Neural Network(ANN))

  • 양동철;김종선
    • Design & Manufacturing
    • /
    • 제16권3호
    • /
    • pp.50-57
    • /
    • 2022
  • The qualities of the products produced by injection molding are strongly influenced by the process variables of the injection molding machine set by the engineer. It is very difficult to predict the qualities of the injection molded product considering the stochastic nature of the manufacturing process, since the processing conditions have a complex impact on the quality of the injection molded product. It is recognized that the artificial neural network(ANN) is capable of mapping the intricate relationship between the input and output variables very accurately, therefore, many studies are being conducted to predict the relationship between the results of the product and the process variables using ANN. However in the condition of a small number of data sets, the predicting performance and robustness of the ANN model could be reduced due to too many input variables. In the present study, the ANN model that predicts the length of the injection molded product for multiple combinations of process variables was developed. And the accuracy of each ANN model was compared for 8 process variables and 4 important process inputs that were determined by the feature selection. Based on the comparison, it was verified that the performance of the ANN model increased when only 4 important variables were applied.

사출성형공정에서 다수 품질 예측에 적용가능한 다중 작업 학습 구조 인공신경망의 정확성에 대한 연구 (A study on the accuracy of multi-task learning structure artificial neural network applicable to multi-quality prediction in injection molding process)

  • 이준한;김종선
    • Design & Manufacturing
    • /
    • 제16권3호
    • /
    • pp.1-8
    • /
    • 2022
  • In this study, an artificial neural network(ANN) was constructed to establish the relationship between process condition prameters and the qualities of the injection-molded product in the injection molding process. Six process parmeters were set as input parameter for ANN: melt temperature, mold temperature, injection speed, packing pressure, packing time, and cooling time. As output parameters, the mass, nominal diameter, and height of the injection-molded product were set. Two learning structures were applied to the ANN. The single-task learning, in which all output parameters are learned in correlation with each other, and the multi-task learning structure in which each output parameters is individually learned according to the characteristics, were constructed. As a result of constructing an artificial neural network with two learning structures and evaluating the prediction performance, it was confirmed that the predicted value of the ANN to which the multi-task learning structure was applied had a low RMSE compared with the single-task learning structure. In addition, when comparing the quality specifications of injection molded products with the prediction values of the ANN, it was confirmed that the ANN of the multi-task learning structure satisfies the quality specifications for all of the mass, diameter, and height.

사출성형품의 웰드라인 강도에 관한 연구 (A Study on the Weld Line Strength in Injection Molded Part)

  • 모정혁;홍형식;류민영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.211-216
    • /
    • 2003
  • Weld line in injection molded part is one of the defect in injection molding process. Weld line deteriorates not only appearance quality but mechanical property. In this study weld line strength has been examined according to the injection operational conditions, materials and mold designs. PC and PP were used, and four different specimens were used in this experiment. Weld line strength decreased as injection temperature increases for PC. It was more dependent on mold temperature than injection temperature for PP Among the four different specimens, uneven thickness specimen showed the highest weld line strength.

  • PDF