• Title/Summary/Keyword: inhibitor p21

Search Result 364, Processing Time 0.039 seconds

The Bcl-2/Bcl-xL Inhibitor ABT-263 Attenuates Retinal Degeneration by Selectively Inducing Apoptosis in Senescent Retinal Pigment Epithelial Cells

  • Wonseon Ryu;Chul-Woo Park;Junghoon Kim;Hyungwoo Lee;Hyewon Chung
    • Molecules and Cells
    • /
    • v.46 no.7
    • /
    • pp.420-429
    • /
    • 2023
  • Age-related macular degeneration (AMD) is one of the leading causes of blindness in elderly individuals. However, the currently used intravitreal injections of anti-vascular endothelial growth factor are invasive, and repetitive injections are also accompanied by a risk of intraocular infection. The pathogenic mechanism of AMD is still not completely understood, but a multifactorial mechanism that combines genetic predisposition and environmental factors, including cellular senescence, has been suggested. Cellular senescence refers to the accumulation of cells that stop dividing due to the presence of free radicals and DNA damage. Characteristics of senescent cells include nuclear hypertrophy, increased levels of cell cycle inhibitors such as p16 and p21, and resistance to apoptosis. Senolytic drugs remove senescent cells by targeting the main characteristics of these cells. One of the senolytic drugs, ABT-263, which inhibits the antiapoptotic functions of Bcl-2 and Bcl-xL, may be a new treatment for AMD patients because it targets senescent retinal pigment epithelium (RPE) cells. We proved that it selectively kills doxorubicin (Dox)-induced senescent ARPE-19 cells by activating apoptosis. By removing senescent cells, the expression of inflammatory cytokines was reduced, and the proliferation of the remaining cells was increased. When ABT-263 was orally administered to the mouse model of senescent RPE cells induced by Dox, we confirmed that senescent RPE cells were selectively removed and retinal degeneration was alleviated. Therefore, we suggest that ABT-263, which removes senescent RPE cells through its senolytic effect, has the potential to be the first orally administered senolytic drug for the treatment of AMD.

The effect of indomethacin on the protamine induced hemodynamic changes (Protamin 투여로 야기되는 혈역학적 변화에 미치는 Indomethacin 의 영향)

  • Kim, Gyeong-U;Jo, Geon-Hyeon;Lee, Hong-Gyun
    • Journal of Chest Surgery
    • /
    • v.23 no.2
    • /
    • pp.222-230
    • /
    • 1990
  • Protamine, a polycationic peptide extracted from fish, has been widely used for the reversal of anticoagulant action of heparin. However it may cause untoward circulatory side effects including hypotension and bradyarrhythmia. Nowadays, histamine and prostacyclin are regarded as one of the causative agents in the underlying mechanism of hemodynamic changes. To certify the possible role of histamine and prostacyclin, we observed simultaneous changes of the hemodynamic status, plasma concentration of thromboxane B, and circulating platelet count before and after intravenous injection of protamine. Experimental dogs, weighing 12-14kg, were divided into 2 groups; group A animals [n=10], were pretreated with indomethacin[2.5mg/kg] and group B animals[n=10] were pretreated with chlorpheniramine[0.5mg/kg] Heparin[3mg/kg] and protamine [3mg/kg] were administered sequentially in both groups. The results were as follows ; 1. The mean systemic arterial pressure was maintained well in groups A, whereas in group B it decreased from 165\ulcorner18mmHg to 138\ulcorner30mmHg[p<0.01] and 151\ulcorner21 mmHg[p<0.05] at 1 minute and 2 minutes after protamine injection. The mean pulmonary arterial pressure was not changed significantly in group A, whereas in group B it increased from 852 mmHg to 11\ulcorner3 mmHg[p<0.05], 11\ulcorner3 mmHg[p<0.05] and 10\ulcorner3 mmHg[p<0.05] at 1 minute, 3 minutes and 5 minutes after protamine injection. 2 The thromboxane B2 was not changed significantly in group A, whereas in group B it increased from 399\ulcorner401 \ulcornerg/ml to 744\ulcorner615 \ulcornerg/ml[p<0.05] and 814\ulcorner1070 \ulcornerg/ml [p<0.0 5] at 1 minute and 3 minutes after protamine injection without concomitant changes of pulmonary vascular resistance and pulmonary capillary wedge pressure. 3. The number of circulating platelet was not changed in group A, whereas in group B it decreased from 207100\ulcorner103600/\ulcornerl to 159700\ulcorner90900/\ulcornerl [p<0.05] at 1 minute after protamine injection, Although thromboxane B2 and platelet count were changed significantly after protamine injection, they did not cause the remarkable hemodynamic changes. Considering the above results, hemodynamic changes may be caused mainly by prostacyclin rather than thromboxane or platelet. Therefore, the pretreatment with cyclooxygenase inhibitor would be beneficial to prevent circulatory adverse effects of protamine for the patients undergoing cardiac surgery.

  • PDF

Enhancement of Tumor Response by MEK Inhibitor in Murine HCa-I Tumors (C3H/HeJ 마우스 간암에서 MEK 억제제에 의한 방사선 감수성 향상 효과)

  • Kim, Sung-Hee;Seong, Jin-Sil
    • Radiation Oncology Journal
    • /
    • v.21 no.3
    • /
    • pp.207-215
    • /
    • 2003
  • Purpose: Extracellular signal-regulated kinase (ERK), which is part of the mitogen-activated protin kinase cascade, opposes initiation of the apoptotic cell death which is programmed by diverse cytotoxic stimuli. In this regard, the inhibition of ERK may be useful in improving the therapeutic efficacy of established anticancer agents. Materials and Methods: Murine hepatocarcinoma, HCa-I is known to be highly radioresistant with a TCD50 (radiation dose yield in $50\%$ cure) of more than 80 Gy. Various anticancer drugs have been found to enhance the radioresponse of this particular tumor but none were successful. The objective of this study was to explore whether the selective inhibition of MEK could potentiate the antitumor efficacy of radiation in vivo, particularly in the case on radioresistant tumor. C3H/HeJ mice hearing $7.5\~8\;mm$ HCa-I, were treated with PD98059(intratumoral injection of $0.16\;\mug/50\;\mul$). Results: Downregulation on ERK by PD98059 was most prominent 1h after the treatment. In the tumor growth delay assay, the drug was found to Increase the effect of the tumor radioresponse with an enhancement factor (EF) of 1.6 and 1.87. Combined treatment of 25 Gy radiation with PD98059 significantly increased radiation induced apoptosis. The peak apoptotic index (number on apoptotic nuclei in 1000 nuclei X100) was $1.2\%$ in the case of radiation treatment alone, $0.9\%$ in the case of drug treatment alone and $4.9\%,\;5.3\%$ in the combination treatment group. An analysis of apoptosis regulating molecules with Western blotting showed upregulation of p53, p$p21^{WAF1/CIP1}\;and\;Bcl-X_s$ in the combination treatment group as compared to their levels in either the radiation alone or drug alone treatment groups. The level of other molecules such as $Bcl-X_L4, Bax and Bcl-2 were changed to a lesser extent. Conclusion: The selective inhibition of MEK in combination with radiation therapy may have potential benefit in cancer treatment.

Prostaglandin E2 Reverses Curcumin-Induced Inhibition of Survival Signal Pathways in Human Colorectal Carcinoma (HCT-15) Cell Lines

  • Shehzad, Adeeb;Islam, Salman Ul;Lee, Jaetae;Lee, Young Sup
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.899-906
    • /
    • 2014
  • Prostaglandin $E_2$ ($PGE_2$) promotes tumor-persistent inflammation, frequently resulting in cancer. Curcumin is a diphenolic turmeric that inhibits carcinogenesis and induces apoptosis. $PGE_2$ inhibits curcumin-induced apoptosis; however, the underlying inhibitory mechanisms in colon cancer cells remain unknown. The aim of the present study is to investigate the survival role of $PGE_2$ and whether addition of exogenous $PGE_2$ affects curcumininduced cell death. HCT-15 cells were treated with curcumin and $PGE_2$, and protein expression levels were investigated via Western blot. Reactive oxygen species (ROS) generation, lipid peroxidation, and intracellular glutathione (GSH) levels were confirmed using specific dyes. The nuclear factor-kappa B ($NF-{\kappa}B$) DNA-binding was measured by electrophoretic mobility shift assay (EMSA). $PGE_2$ inhibited curcumin-induced apoptosis by suppressing oxidative stress and degradation of PARP and lamin B. However, exposure of cells to the EP2 receptor antagonist, AH6809, and the PKA inhibitor, H89, before treatment with $PGE_2$ or curcumin abolished the protective effect of $PGE_2$ and enhanced curcumin-induced cell death. $PGE_2$ activates PKA, which is required for cAMP-mediated transcriptional activation of CREB. $PGE_2$ also activated the Ras/Raf/Erk pathway, and pretreatment with PD98059 abolished the protective effect of $PGE_2$. Furthermore, curcumin treatment greatly reduced phosphorylation of CREB, followed by a concomitant reduction of $NF-{\kappa}B$ (p50 and p65) subunit activation. $PGE_2$ markedly activated nuclear translocation of $NF-{\kappa}B$. EMSA confirmed the DNA-binding activities of $NF-{\kappa}B$ subunits. These results suggest that inhibition of curcumin-induced apoptosis by $PGE_2$ through activation of PKA, Ras, and $NF-{\kappa}B$ signaling pathways may provide a molecular basis for the reversal of curcumin-induced colon carcinoma cell death.

Clinical significance of loss of p16 protein by immunohistochemical staining in acute lymphoblastic leukemia (급성림프구성백혈병에서 면역조직화학염색에 의한 p16 단백질 소실의 의의)

  • Jin, Hye Young;Kang, Kyoung In;Kim, Sun Young;Youn, You Sook;Kang, Joon Won;Jo, Deog Yeon;Kwon, Kye Chul;Park, Kyung Duk
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.1
    • /
    • pp.73-77
    • /
    • 2008
  • Purpose : p16 gene, mapped to the 9p21 chromosomal region, has emerged as a candidate tumor suppressor gene in human neoplasm. It is an inhibitor of cyclin-dependent kinase and inhibits Rb phosphorylation. In a variety of tumors including childhood acute lymphoblastic leukemia (ALL), deletion and/or mutation of the p16 gene has been found. Despite their high frequency, the prognostic importance of p16 alterations is still controversial in ALL and has been reported to be either unfavorable or similar to that of other patients. We studied the correlation between loss of p16 protein confirmed by immunohistochemical staining and clinical outcomes of patients diagnosed as ALL. Methods : We performed an immunohistochemical staining for p16 protein in 74 cases of bone marrow biopsy slide initially diagnosed as ALL between January 1998 and December 2006. We reviewed the clinical manifestations, laboratory findings, treatment outcomes retrospectively. Results : Of 74 slides, 12 were negative for p16 protein. Seven were males and 5 were females with a median age at diagnosis was 5.8 (1.3-18.8) years. Initial WBC were 17,225 $(500-403,300)/{\mu}L$. By immunologic surface marker analysis, 7 patients were early pre-B CALLA (+) and 5 patients were T-cell ALL. Two patients of intermediate risk group had relapsed and died. Three patients had family history of breast cancer. Four patients died and overall survival rates were $53.5{\pm}18.7%$. Conclusion : Loss of p16 protein is supposed to be an independent risk factor of childhood ALL associated with poor outcomes. In clinical setting, the clinician must take into account p16 status, not only at the genomic but also at the protein level. Further clinical experience on thoroughly investigated cases will help a better understanding between p16 status and clinical outcomes.

Effects of Glucose and Acrylic acid Addition on the Biosynthesis of Medium-Chain-Length Polyhydroxyalkanoates by Pseudomonas chlororaphis HS21 from Plant Oils (Pseudomonas chlororaphis HS21에 의한 식물유로부터 Medium-Chain-Length Polyhydroxyalkanoates 생합성이 미치는 포도당 및 아크릴산의 첨가 효과)

  • Chung Moon-Gyu;Yun Hye Sun;Kim Hyung Woo;Nam Jin Sik;Chung Chung Wook;Rhee Young Ha
    • Korean Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.225-231
    • /
    • 2005
  • The characteristics of cell growth and medium-chain-length polyhydroxyalkanoate (MCL-PHA) biosynthesis of Pseudomonas chlororaphis HS21 were investigated using plant oils as the carbon substrate. The organism was efficiently capable of utilizing plant oils, such as palm oil, corn oil, and sunflower oil, as the sole carbon source for growth and MCL-PHA production. When palm oil (5 g/L) was used as the carbon source, the cell growth and MCL-PHA accumulation of this organism occurred simultaneously, and a high dry cell weight (2.4 g/L) and MCL-PHA ($40.2\;mol{\%}$ of dry cell weight) was achieved after 30 hr of batch-fermentation. The repeating unit in the MCL-PHA produced from palm oil composed of 3-hydroxyhexanoate ($7.0\;mol{\%}$), 3-hydroxyoctanoate ($45.3\;mol{\%}$), 3-hydroxydecanoate ($39.0\;mol{\%}$), 3-hydroxydodecanoate ($6.8\;mol{\%}$), and 3-hydroxytetradecanoate ($1.9\;mol{\%}$), as determined by GC/MS. Even though glucose was a carbon substrate that support cell growth but not PHA production, the conversion rate of palm oil to PHA was significantly increased when glucose was fed as a cosubstrate, suggesting that bioconversion of some functionalized carbon substrates to related polymers in P chlororaphis HS21 could be enhanced by the co-feed of good carbon substrates for cell growth. In addition, the change of compositions of repeating units in MCL-PHAs synthesized from the plant oils was markedly affected by the supplementation of acrylic acid, an inhibitor of fatty acid ${\beta}-oxidation$. The addition of acrylic acid resulted in the increase of longer chain-length repeating units, such as 3-hydroxydodecanoate and 3-hydroxytetradecanoate, in the MCL-PHAs produced. Particularly, MCI-PHAs containing high amounts of unsaturated repeating units could be produced when sunflower oil and corn oil were used as the carbon substrate. These results suggested that the alteration of PHA synthesis pathway by acrylic acid addition can offer the opportunity to design new functional MCL-PHAs and other unusual polyesters that have unique physico-chemical properties.

3-Deoxysappanchalcone Inhibits Cell Growth of Gefitinib-Resistant Lung Cancer Cells by Simultaneous Targeting of EGFR and MET Kinases

  • Jin-Young Lee;Seung-On Lee;Ah-Won Kwak;Seon-Bin Chae;Seung-Sik Cho;Goo Yoon;Ki-Taek Kim;Yung Hyun Choi;Mee-Hyun Lee;Sang Hoon Joo;Jin Woo Park;Jung-Hyun Shim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.446-455
    • /
    • 2023
  • The mechanistic functions of 3-deoxysappanchalcone (3-DSC), a chalcone compound known to have many pharmacological effects on lung cancer, have not yet been elucidated. In this study, we identified the comprehensive anti-cancer mechanism of 3-DSC, which targets EGFR and MET kinase in drug-resistant lung cancer cells. 3-DSC directly targets both EGFR and MET, thereby inhibiting the growth of drug-resistant lung cancer cells. Mechanistically, 3-DSC induced cell cycle arrest by modulating cell cycle regulatory proteins, including cyclin B1, cdc2, and p27. In addition, concomitant EGFR downstream signaling proteins such as MET, AKT, and ERK were affected by 3-DSC and contributed to the inhibition of cancer cell growth. Furthermore, our results show that 3-DSC increased redox homeostasis disruption, ER stress, mitochondrial depolarization, and caspase activation in gefitinib-resistant lung cancer cells, thereby abrogating cancer cell growth. 3-DSC induced apoptotic cell death which is regulated by Mcl-1, Bax, Apaf-1, and PARP in gefitinib-resistant lung cancer cells. 3-DSC also initiated the activation of caspases, and the pan-caspase inhibitor, Z-VAD-FMK, abrogated 3-DSC induced-apoptosis in lung cancer cells. These data imply that 3-DSC mainly increased mitochondria-associated intrinsic apoptosis in lung cancer cells to reduce lung cancer cell growth. Overall, 3-DSC inhibited the growth of drug-resistant lung cancer cells by simultaneously targeting EGFR and MET, which exerted anti-cancer effects through cell cycle arrest, mitochondrial homeostasis collapse, and increased ROS generation, eventually triggering anti-cancer mechanisms. 3-DSC could potentially be used as an effective anti-cancer strategy to overcome EGFR and MET target drug-resistant lung cancer.

Maspin Expression and Its Clinical Significance in Non-Small Cell Lung Cancer (비소세포폐암에서 Maspin의 발현과 임상적 의의)

  • Yoon, Seong-Hoon;Kim, Won-Jin;Shin, Kyung-Hwa;Kim, Mi-Hyun;Cho, Woo-Hyun;Kim, Ki-Uk;Park, Hye-Kyung;Jeon, Doo-Soo;Kim, Yun-Seong;Lee, Chang-Hun;Lee, Min-Ki;Park, Soon-Kew
    • Tuberculosis and Respiratory Diseases
    • /
    • v.70 no.2
    • /
    • pp.132-138
    • /
    • 2011
  • Background: Maspin (mammary serine protease inhibitor) is a member of the serpin superfamily. A few studies have examined the role of maspin in tumor suppression of non-small cell lung cancer (NSCLC); however, its role in the development and progression of NSCLC still remains controversial. We evaluated the immunohistochemical expression of maspin in order to elucidate its clinical significance in NSCLC. Methods: We analyzed 145 patients with pathologically confirmed NSCLC, including 66 cases of squamous cell carcinomas (SCCs) and 79 cases of adenocarcinomas (ADCs). We performed a immuno-histochemical stain with maspin and PCNA (proliferating cell nuclear antigen) using tissue microarray blocks. Results: There were 108 men and 37 women in the study population. The mean age of patients in the study was 63.7 years (range, 40.0~82.0; median, 65.0). The proportion of maspin expression was significantly higher in SCCs (52/66, 78.8%; p<0.01) than in ADCs (17/79, 21.5%; p<0.01). Maspin expression was not associated with PCNA (p=0.828), lymph node involvement (p=0.483), or tumor stage (p=0.216), but showed correlation with well-to-moderate tumor differentiation (p=0.012). There was no observed correlation between maspin expression and survival with NSCLC (p=0.218). Conclusion: The present study suggests that maspin expression was significantly higher in SCCs than in ADCs and was associated with low histological grade. However, maspin expression was not an independent factor to predict a prognosis in NSCLC.

Combined Treatment of Activin A and Heparin Binding-EGF (HB-EGF) Enhances In Vitro Production of Bovine Embryos

  • Kim, Se-Woong;Jung, Yeon-Gil;Park, Jong-Im;Roh, Sangho
    • Journal of Embryo Transfer
    • /
    • v.29 no.2
    • /
    • pp.127-132
    • /
    • 2014
  • This study was carried out to investigate the effects of tissue inhibitor of matalloproteinase-1 (TIMP-1), Activin A and Heparin binding epidermal growth factor (HB-EGF) on in vitro production of bovine embryos. In experiment 1, presumptive zygotes were cultured in the medium supplemented with TIMP-1 ($0.5{\mu}g/ml$), Activin A (100 ng/ml), or HB-EGF (100 ng/ml) at $39^{\circ}C$ in a humidified atmosphere of 5% (v/v) $CO_2$, 5% (v/v) $O_2$ and 90% (v/v) $N_2$. In experiment 2, TIMP-1 + HB-EGF or Activin A + HB-EGF combinations were supplemented in the culture medium. The developmental rate to blastocysts, hatching rate and total cell numbers of the blastocysts were evaluated in both experiments. The embryos cultured in medium without growth factor supplementation was used as control group. In experiment 1, the embryos cultured in medium supplemented with TIMP-1 and Activin A showed significantly higher developmental rate to blastocysts than those cultured with HB-EGF and control (36.9%, 34.1%, 21.2% and 23.1%, respectively) (P<0.0001). However, the hatching rate of blastocyst was significantly higher in embryos with HB-EGF than those with TIMP-1, Actvin A and Control groups (84.4%, 58.8%, 51.4% and 49.3%, respectively) (P<0.001). Total cell number per blastocyst was also significantly higher in embryos with HB-EGF group ($174.3{\pm}2.5$) than those with TIMP-1, Activin A (149.7 and 150.0, respectively) (P<0.05) and Control (119.0) (P<0.001). In experiment 2, embryos cultured with combined treatment of Activin A and HB-EGF resulted in significantly higher rates of blastocysts formation (48.0%), hatching rate (89.7%) and total cell number in blastocyst ($182.3{\pm}2.1$) than those with TIMP-1 and HB-EGF combination group (32.0%, P<0.001; 76.6%, P<0.05; $165.7{\pm}4.2$, P<0.001, respectively). Our data demonstrate that in vitro production of bovine embryos could be improved by combined supplementation of Activin A and HB-EGF in culture medium.

Genotypic Investigation of Multidrug-Resistant Pseudomonas aeruginosa from Clinical Isolates in Korea, 2010 (2010년도 국내 임상에서 분리한 다제내성 녹농균의 유전자형 조사)

  • Kim, Min Ji;Cha, Min Kyeong;Lee, Do Kyung;Kang, Ju Yeon;Park, Jae Eun;Kim, Young Hee;Park, Il Ho;Shin, Hea Soon;Ha, Nam Joo
    • Korean Journal of Microbiology
    • /
    • v.48 no.4
    • /
    • pp.240-245
    • /
    • 2012
  • Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium that causes serious infection, particularly in immunocompromised patients. Also, P. aeruginosa possessing carbapenem-resistant metallo-${\beta}$-lactamases (MBL) has been reported with increasing frequency in Korea. We therefore analyzed the level of multidrug-resistant clinical P. aeruginosa isolated from a secondary hospital in Korea in 2010. A total of 92 isolates of P. aeruginosa were collected from Sahmyook Medical Center in 2010. Susceptibility to antimicrobial agents was determined by analysis of the minimum inhibitory concentration test; the inhibitor-potentiated disk diffusion (IPD) test was performed for MBL detection. RAPD-PCR was used for genotyping to rapidly characterize P. aeruginosa strains isolated from clinical patients. The percentages of non-susceptible isolates were as follows: 40.2% to ceftazidime, 58.7% to meropenem, 56.5% to gentamicin, 46.7% to tobramycin, 62.0% to ciprofloxacin and 97.8% to chloramphenicol. The 29 multidrug-resistant strains were screened by the IPD test: of the 21 PCR-positive isolates, 19 were IPM-1 producers and 2 were VIM-2 producers. Among the 19 IMP-1-producing P. aeruginosa isolates, 16 isolates showed similar patterns, and three different banding patterns were observed. The proportion of IMP-1-producing multidrug-resistant P. aeruginosa from clinical isolates steadily increased in this secondary hospital in Korea in 2010. This study provides information about the antimicrobial-resistant patterns and genotype of multidrug-resistant P. aeruginosa isolated from clinical isolates in Korea, 2010.