Effects of Glucose and Acrylic acid Addition on the Biosynthesis of Medium-Chain-Length Polyhydroxyalkanoates by Pseudomonas chlororaphis HS21 from Plant Oils

Pseudomonas chlororaphis HS21에 의한 식물유로부터 Medium-Chain-Length Polyhydroxyalkanoates 생합성이 미치는 포도당 및 아크릴산의 첨가 효과

  • Chung Moon-Gyu (Department of Microbiology, Chungnam National University) ;
  • Yun Hye Sun (Department of Microbiology, Chungnam National University) ;
  • Kim Hyung Woo (Institute of Biotechnology, Chungnam National University) ;
  • Nam Jin Sik (Department of Food and Nutrition, Sunwon Womens' College) ;
  • Chung Chung Wook (Department of Microbiology, Chungnam National University) ;
  • Rhee Young Ha (Department of Microbiology, Chungnam National University)
  • 정문규 (충남대학교 생명과학부 미생물학과) ;
  • 윤혜선 (충남대학교 생명과학부 미생물학과) ;
  • 김형우 (충남대학교 생물공학연구소) ;
  • 남진식 (수원여자대학 식품영양학과) ;
  • 정정욱 (충남대학교 생명과학부 미생물학과) ;
  • 이영하 (충남대학교 생명과학부 미생물학과)
  • Published : 2005.09.01

Abstract

The characteristics of cell growth and medium-chain-length polyhydroxyalkanoate (MCL-PHA) biosynthesis of Pseudomonas chlororaphis HS21 were investigated using plant oils as the carbon substrate. The organism was efficiently capable of utilizing plant oils, such as palm oil, corn oil, and sunflower oil, as the sole carbon source for growth and MCL-PHA production. When palm oil (5 g/L) was used as the carbon source, the cell growth and MCL-PHA accumulation of this organism occurred simultaneously, and a high dry cell weight (2.4 g/L) and MCL-PHA ($40.2\;mol{\%}$ of dry cell weight) was achieved after 30 hr of batch-fermentation. The repeating unit in the MCL-PHA produced from palm oil composed of 3-hydroxyhexanoate ($7.0\;mol{\%}$), 3-hydroxyoctanoate ($45.3\;mol{\%}$), 3-hydroxydecanoate ($39.0\;mol{\%}$), 3-hydroxydodecanoate ($6.8\;mol{\%}$), and 3-hydroxytetradecanoate ($1.9\;mol{\%}$), as determined by GC/MS. Even though glucose was a carbon substrate that support cell growth but not PHA production, the conversion rate of palm oil to PHA was significantly increased when glucose was fed as a cosubstrate, suggesting that bioconversion of some functionalized carbon substrates to related polymers in P chlororaphis HS21 could be enhanced by the co-feed of good carbon substrates for cell growth. In addition, the change of compositions of repeating units in MCL-PHAs synthesized from the plant oils was markedly affected by the supplementation of acrylic acid, an inhibitor of fatty acid ${\beta}-oxidation$. The addition of acrylic acid resulted in the increase of longer chain-length repeating units, such as 3-hydroxydodecanoate and 3-hydroxytetradecanoate, in the MCL-PHAs produced. Particularly, MCI-PHAs containing high amounts of unsaturated repeating units could be produced when sunflower oil and corn oil were used as the carbon substrate. These results suggested that the alteration of PHA synthesis pathway by acrylic acid addition can offer the opportunity to design new functional MCL-PHAs and other unusual polyesters that have unique physico-chemical properties.

식물유를 탄소원으로 사용하여 medium-chain-length polyhydroxyalkanoates (MCL-PHAs)를 생산할 수 있는 Pseudomonas chlororaphis HS21을 대상으로 대사경로의 변화를 통하여 식물유의 MCL-PHA로의 전환율을 증진시키고 MCL-PHAs의 단위체 조성의 변화를 유도하기 위한 방안을 모색하였다. P. chlororaphis HS21의 MCL-PHAs 생합성은 세포생장과 동시에 일어나는 특징을 보였으며, 팜유를 유일 탄소원으로 사용한 회분배양의 결과 2.4 g/L의 건체량과 건체량의 $40.2\;wt{\%}$에 해당하는 MCL-PHAs를 얻을 수 있었다. 또한 생합성된 MCL-PHAs의 단위체는 3-hydroxyhexanoate($7.0\;mol{\%}$, 3-hydroxyoctanoate ($45.3\;mol{\%}$. 3-hydroxydecanoate ($39.0\;mol{\%}$), 3-hydroxydodecanoate ($6.8\;mol{\%}$) 및 3-hydroxytetradecanoate ($1.9\;mol{\%}$)로 구성되어 있었다. 식물유와는 달리 포도당과 같은 탄수화물은 P. chlororaphis HS21의 생장에는 이용되지만 MCL-PHAs의 생합성에는 거의 이용되지 못하는 탄소원임을 확인하고, 식물유와 함께 포도당을 보조기질로 공급한 결과 식물유의 MCL-PHAs로의 전환율이 크게 증가함으로써, PHA 생산에 직접적으로 이용되지 못하는 보조기질의 사용을 통하여 특정 기능기를 함유하는 기질로부터 해당 기능기를 갖는 MCL-PHAs를 효율적으로 생산할 수 있음을 알 수 있었다. 또한 지방산의 ${\beta}-oxidation$ 회로를 방해하는 아크릴산을 첨가할 경우 아크릴산의 독성에 의하여 세포생장은 저해를 받지만 세포 내 MCL-PHAs의 축적율은 감소하지 않았으며, MCL-PHAs를 구성하는 단위체 중 3-hydroxydo-decanoate 및 3-hydroxytetradecanoate와 같이 탄소수가 보다 큰 단위체의 함량이 크게 증가하였다. 이러한 특징에 의해 해바라기유와 옥수수유로부터는 3-hydroxydodecenoate, 3-hydroxytetradecenoate와 같은 불포화 단위체의 함량이 크게 증가된 기능성 MCL-PHAs를 생산할 수 있었다. 이러한 결과는 아크릴산의 첨가와 같은 PHA 대사경로의 인위적 변화가 새로운 단위체 조성을 갖거나 기능기를 가짐으로써 독특한 물성을 지니는 신규의 MCL-PHAs 개발에 유용할 수 있음을 보여준다.

Keywords

References

  1. Ashby R.D, T.A Foglia, C.K. Liu, and J.W. Hampson. 1998. Improved film properties of radiation-treated medium-chain-length poly(hydroxyalkanoates). Biotechnol. Lett. 20, 1047-1052 https://doi.org/10.1023/A:1005411106279
  2. Chung C.W., H.W. Kim, Y.B. Kim, and Y.H. Rhee. 2003. Poly(etylene glycol)-grafted poly(3-hydroxyundecenoate) network for enhanced blood compatibility. Int. J. Biol. Macromol. 32, 217-225 https://doi.org/10.1016/S0141-8130(03)00088-6
  3. Doi Y., Y. Kawaguchi, N. Koyama, S. Nakamura, M. Hiramitsu, and H. Kimura. 1992. Synthesis and degradation of polyhydroxyalkanoates in Alcaligenes eutrophus. FEMS Microbiol. Rev. 103, 103-108 https://doi.org/10.1111/j.1574-6968.1992.tb05827.x
  4. Fiedler S., A. Steinbüchel, and B.H. Rehm. 2000. PhaG-mediated synthesis of poly(3-hydroxyalkanoates) consisting of medium-chain-length constituents from nonrelated carbon sources in recombinant Pseudomonas fragi. Appl. Environ. Microbiol. 66, 2117-2124 https://doi.org/10.1128/AEM.66.5.2117-2124.2000
  5. Fischer R.B., and D.G. Peter. 1968. Quantitative chemical analysis, p. 677-679. W. B. Saunders Co., Philadelphia, PA, U.S.A
  6. Green P.R., J. Kemper, L. Schechtman, L. Guo, M. Satkowski, S. Fiedler, A. Steinbüchel, and B.H. Rehm. 2002. Formation of short chain length/medium chain length polyhydroxyalkanoate copolymers by fatty acid beta-oxidation inhibited Ralstonia eutropha. Biomacromolecules 3, 208-213 https://doi.org/10.1021/bm015620m
  7. Hang X., Z. Lin, J. Chen, G. Wang, K. Hong, and G.Q. Chen. 2002. Polyhydroxyalkanoate biosynthesis in Pseudomonas pseudoalcaligenes YS1. FEMS Microbiol. Lett. 212, 71-75 https://doi.org/10.1111/j.1574-6968.2002.tb11247.x
  8. Hassan M.A., O. Nawata, Y. Shirai, N.A.A. Rahman, P. Yee, B. Lai, A. Ariff, K. Abdul, and I. Mohamed. 2002. A proposal for zero emission from palm oil industry incorporating the production of polyhydroxyalkanoates from palm oil mill effluent. J. Chem. Eng. Jpn. 35, 9-14 https://doi.org/10.1252/jcej.35.9
  9. Hazenberg W. and B. Witholt. 1997. Efficient production of medium-chain-length poly(3-hydroxyalkanoates) from octane by Pseudomonas oleovorans: economic considerations. Appl. Microbiol. Biotechnol. 48, 588-596 https://doi.org/10.1007/s002530051100
  10. Ilans S.A. and D.K. Jay. 2003. Process design for microbial plastic factories: metabolic engineering of polyhydroxyalkanoates. Curr. Opin. Biotechnol. 14, 1-9 https://doi.org/10.1016/S0958-1669(02)00013-7
  11. Kang H.O., C.W. Chung, H.W. Kim, Y.B. Kim, and Y.H. Rhee. 2001. Cometabolic biosynthesis of copolyesters consisting of 3-hydroxyvalerate and medium-chain-length 3-hydroxyalkanoates by Pseudomonas sp. DSY-82. Antonie van Leeuwenhoek 80, 185-191 https://doi.org/10.1023/A:1012214029825
  12. Kim, D.Y., Y.B. Kim, and Y.H. Rhee. 2000. Evaluation of various carbon substrates for the biosynthesis of polyhydroxyalkanoates bearing functional groups by Pseudomonas putida. Int. J. Biol. Macromol. 28, 23-29 https://doi.org/10.1016/S0141-8130(00)00150-1
  13. Kim, D.Y., Y.B. Kim, and Y.H. Rhee. 2002. Cometabolic production of poly(3-hydroxyalkanoates) containing carbon-carbon double and carbon-carbon triple bonds by Pseudomonas oleovorans. J. Microbiol. Biotechnol. 12, 518-521
  14. Kim, G.J., Y.K. Yang, and Y.H. Rhee. 2001. Economic consideration of poly(3-hydroxybutyrate) production by fed-batch culture of Ralstonia eutropha KHB 8862. Kor. J. Microbiol. 37, 92-99
  15. Kim, Y.B., C.W. Chung, H.W. Kim, and Y.H. Rhee. 2005. Shape memory effect of bacterial poly(3-hydroxybutyrate-3-hydroxyvalerate). Macromol. Rapid Commun. 26, 1070-1074 https://doi.org/10.1002/marc.200500156
  16. Lu X., J. Zhang, Q. Wu, and G.Q. Chen. 2003. Enhanced production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) via manipulating the fatty acid beta-oxidation pathway in E. coli. FEMS Microbiol. Lett. 221, 97-101 https://doi.org/10.1016/S0378-1097(03)00173-3
  17. Minoru A., T. Takeharu, and Y. Doi. 2003. Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentation. Polym. Degrad. Stabil. 80, 184-194
  18. Solaiman D.K.Y., R.D. Ashby, and T.A. Foglia. 1999. Medium-chain-length poly($\beta$-hydroxyalkanoate) synthesis from triacylglycerols by Pseudomonas saccharophila. Curr. Microbiol. 38, 151-154 https://doi.org/10.1007/PL00006779
  19. Solaiman D.K.Y., R.D. Ashby, and T.A. Foglia. 2002. Physiological characterization and genetic engineering of Pseudomonas corrugata for medium-chain-length polyhydroxyalkanoates synthesis from triacylglycerols. Curr. Microbiol. 44, 189-195 https://doi.org/10.1007/s00284-001-0086-5
  20. Steinbuchel A, 2001. Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of poly-hydroxyalkanoate biosynthesis pathways as a successful example. Macromol. Biosci. 1, 1-24 https://doi.org/10.1002/1616-5195(200101)1:1<1::AID-MABI1>3.0.CO;2-B
  21. Tan, I.K.P., K.S. Kumar, M. Theanmalar, S.N. Gan, and B. Gordon III. 1997. Saponified palm kernel oil and its major free fatty acids as carbon substrates for the production of polyhydroxyalkanoates in Pseudomonas putida PGA1. Appl. Microbiol. Biotechnol. 47, 207-211 https://doi.org/10.1007/s002530050914
  22. Yoshie, N. and Y. Inoue. 1999. Chemical composition distribution of bacterial copolyesters. Int. J. Biol. Macromol. 25, 193-200 https://doi.org/10.1016/S0141-8130(99)00034-3
  23. Yun H.S, D.Y Kim, C.W. Chung, H.W. Kim, Y.K. Yang, Y.H. Rhee. 2003. Characterization of a tacky poly(3-hydroxyalkanoate) produced by Pseudomonas chlororaphis HS21 from palm kernel oil. J. Microbiol. Biotechnol. 13, 64-69
  24. Witholt, B. and B. Kessler. 1999. Perspectives of medium chain length poly(hydroxyalkanoates), a versatile set of bacterial bioplastics. Curr. Opin. Biotechnol. 10, 279-285 https://doi.org/10.1016/S0958-1669(99)80049-4