Enhancement of Tumor Response by MEK Inhibitor in Murine HCa-I Tumors

C3H/HeJ 마우스 간암에서 MEK 억제제에 의한 방사선 감수성 향상 효과

  • Kim, Sung-Hee (Brain Korea 21 Project for Medical Science, Yonsei University Medical College) ;
  • Seong, Jin-Sil (Department of Radiation Oncology, Yonsei University Medical College)
  • 김성희 (연세대학교 의과대학 두뇌한국21 의과학 사업단) ;
  • 성진실 (연세대학교 의과대학 방사선종야학교실)
  • Published : 2003.09.01

Abstract

Purpose: Extracellular signal-regulated kinase (ERK), which is part of the mitogen-activated protin kinase cascade, opposes initiation of the apoptotic cell death which is programmed by diverse cytotoxic stimuli. In this regard, the inhibition of ERK may be useful in improving the therapeutic efficacy of established anticancer agents. Materials and Methods: Murine hepatocarcinoma, HCa-I is known to be highly radioresistant with a TCD50 (radiation dose yield in $50\%$ cure) of more than 80 Gy. Various anticancer drugs have been found to enhance the radioresponse of this particular tumor but none were successful. The objective of this study was to explore whether the selective inhibition of MEK could potentiate the antitumor efficacy of radiation in vivo, particularly in the case on radioresistant tumor. C3H/HeJ mice hearing $7.5\~8\;mm$ HCa-I, were treated with PD98059(intratumoral injection of $0.16\;\mug/50\;\mul$). Results: Downregulation on ERK by PD98059 was most prominent 1h after the treatment. In the tumor growth delay assay, the drug was found to Increase the effect of the tumor radioresponse with an enhancement factor (EF) of 1.6 and 1.87. Combined treatment of 25 Gy radiation with PD98059 significantly increased radiation induced apoptosis. The peak apoptotic index (number on apoptotic nuclei in 1000 nuclei X100) was $1.2\%$ in the case of radiation treatment alone, $0.9\%$ in the case of drug treatment alone and $4.9\%,\;5.3\%$ in the combination treatment group. An analysis of apoptosis regulating molecules with Western blotting showed upregulation of p53, p$p21^{WAF1/CIP1}\;and\;Bcl-X_s$ in the combination treatment group as compared to their levels in either the radiation alone or drug alone treatment groups. The level of other molecules such as $Bcl-X_L4, Bax and Bcl-2 were changed to a lesser extent. Conclusion: The selective inhibition of MEK in combination with radiation therapy may have potential benefit in cancer treatment.

목적: Extracellular signal-regulated kinase (ERK)는 mitogen-activated protein kinase cascade의 일원으로 다양한 세포독성 자극에 의해 유도되는 apoptosis에 반대되는 역할을 한다. 따라서 ERK의 억제는 항암제로서 유용하게 사용될 것으로 생각되어진다. 대상 및 방법: 마우스 간암인 HCa-I는 TCD50가 80 Gy 이상으로 강한 방사선 내성종양으로 알려져 있으며, 방사선 민감성의 증진을 위해 다양한 항암제가 실험되었으나 뚜렷한 효과를 나타내지 못했다. 이 실험을 통해 in vivo,, 특히 방사선 내성종양에서 ERK의 억제가 방사선에 의한 항암 작용을 증진시키는지 알아보고자 하였다. C3H/HeJ 마우스에 종양의 크기가 $7.5\~8\;mm$가 되었을 때 PD98059 ($0.16\;\mug/50\;\mul$로 종양에 직접 주사)를 처리하였다. 결과: 처리 1시간째에 p-ERK가 0.5배로 억제되었다. 종양 성장 지연 분석에서 증강 지수가 전 처리군과 후 처리군에서 각각 1.6과 1.87로 PD98059가 종양의 방사선 감수성을 증가시키는 것으로 관찰되었다. 25 Gy 방사선과 PD98059 복합처리 시 apoptosis가 크게 증가되었다. 각 실험군의 apoptosis 최대치는 방사선 조사군에서 $1.4\%$, PD98059 처리군에서 $0.9\%$ 복합처리군의 전 처리군과 후 처리군에서 각각 $4.9\%\;5.3\%$를 나타냈다. Apoptosis 조절 물질의 변화는, p53의 발현이 복합 처리군에서 PD98059 전 처리군과 후 처리군 모두에서 24시간까지 대조군에 비해 2.7배, 3.2배의 높은 발현 수준을 유지하여 처리 1시간째부터 발현 증가를 하여 24시간까지 지속되는 것이 관찰되었다. $p21^{WAF1/CIP1}$의 발현은 p53 발현 변화와 유사한 양상으로 특히 PD98059 후 처리군에서 방사선 조사군이나 PD98059 전 처리군과 비교하여 높은 발현수준을 보였으며, 24시간까지 3.2배의 높은 발현 수준을 유지하는 것으로 나타났다. Bcl-Xs는 25 Gy 방사선 조사군이나 PD98059 처리군에서는 뚜렷한 변화를 보이지 않았으나 복합 처리군중 전 처리군에서 4시간 째 대조군에 비해 1.93배 증가를 보였으며, 후 처리군에서는 1시간 후에 1.83배의 증가를 보였다. 모든 실험군에서 Bcl-2, $Bcl-X_L$, BaX는 뚜렷한 발현 변화를 보이지 않았다. 결론: 방사선 내성 종양인 간암에 MEK 억제제를 방사선 조사와 복합 처리하여 방사선 감수성을 향상시켜 치료 효율의 상승을 유도 할 수 있을 것으로 생각된다.

Keywords

References

  1. VerheijM,RuiterGA,ZerpSF,etal. TheroleoftheSAPK/JNK signalling pathway in radiation-induced apoptosis. Radiother Oncol 1998;47:225-232 https://doi.org/10.1016/S0167-8140(98)00007-3
  2. Dewey WC, Ling CC, Meyn RE. Radiation-induced apoptosis: relevance to radiotherapy. Int J Radiat Biol 1995;33: 781-796 https://doi.org/10.1016/0360-3016(95)00214-8
  3. Yanafihara K, Nii M, Numoto M, et al. Radiation-induced apoptotic cell deathinhumangastricepithelialtumorcells: correlation between mitotic death and apoptosis. Int J Radiat Biol 1995;67:677-685 https://doi.org/10.1080/09553009514550801
  4. OlivePL,BanathJP,DurandRE. Developmentofapoptosis and polyploidy in human lymphoblast cells as a function of position in the cell cycleatthetimeofirradiation.Radiat Res 1996;146:595-602 https://doi.org/10.2307/3579374
  5. ZhivotovskyB,JosepB,OrreniusS. Tumorradiosensi tivityand apoptosis. Exp Cell Res 1999;248:10-17 https://doi.org/10.1006/excr.1999.4452
  6. Santana P, Pena LA, Haimovitz-Friedman A, et al. Acid sphinogomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis.Cell 1996;86:189-199 https://doi.org/10.1016/S0092-8674(00)80091-4
  7. Schmidt-UllrichR,MikkelsenR,DentP,etal. Radiation induced porliferation of human A431 squamouscarcinomacells is dependent on EGFR tyrosine phosphorylation. Oncogene 1997;15:1191-1197 https://doi.org/10.1038/sj.onc.1201275
  8. CarterS,AuerKL,ReardonDB,etal. Inhibition ofthe mitogen activated portein (MAP) kinase cascade potentiates cell killing by low dose ionizing radiation in A431 human squamous carcinoma cells. Oncogene 1998;16:2787-2796 https://doi.org/10.1038/sj.onc.1201802
  9. Balaban N, Moni J, Shannon M, et al. The effect of ionizing radiation on signal transduction: Antibodies to EGF receptor sensitize A431 cells to radiation. Biochem Biophys Acta 19996;1314:147-156 https://doi.org/10.1016/S0167-4889(96)00068-7
  10. Xia Z, DickensM,RaingeaudJ,etal. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995;270:1326-1331 https://doi.org/10.1126/science.270.5240.1326
  11. Rosette C, Karin M. Ultraviolet light and osmotic stress. Activation of the JNK cascade through multiple growth factor and cytokine receptors.Science1996;274:1194-1197
  12. Pap M, Cooper GM. Role of glycogen systhase kinase-3 in the phosphatidyl inositol 3-kinase/Akt cell survival path-way. J Biol Chem 1998;273:19929-19932 https://doi.org/10.1074/jbc.273.32.19929
  13. Contessa JN, Reardon DB, Todd D, et al. The inducible expression of dominant-negative epidermalgrowthfactor receptor-CD533 results in radiosensitization of human mammary carcinomacells.ClinCancerRes1999;5:405-411
  14. BaselgaJ,NortonL,AlbanellJ,etal. Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/ neu overexpressing human breast cancer xenografts. Cancer Res 1998;58:2825-2831
  15. Huang SM, Bock JM, Harari PM. Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis,andradiosensitivityin squamous cell carcinomas of the head and neck. Cancer Res 1999;59:1935-1940
  16. Dent P, Jarvis WD, BirrerMJ,etal. The roles of signaling by the p42/p44 mitogen-activated protein (MAP) kinase pathway; a potential route to radio- and chemo-sensitization of tumor cells resulting in the induction of apoptosis and loss of clonogenicity. Leukemia 1998;12:1843-1850 https://doi.org/10.1038/sj.leu.2401222
  17. Ezekiel MP, Robert F, Meredith RF, et al. Phase I study of anti-EGFR antibody C225 in combination with irradiaiton in patients with advansed squamous cell carcinoma of the head and neck (SCCHN). Proc Am Assoc Clin Oncol 1998;17:3952
  18. Busam KJ, Capodieci P, MotzerR,etal. Cutaneousside- effects in cancer patients treated with the antiepidermal growth factor receptor antibody C225. Br J Dermatol 2001; 144:1169-1176 https://doi.org/10.1046/j.1365-2133.2001.04226.x
  19. Kavanagh BD,DentP,Schmidt-UllrichR,etal. Ca2+ dependent stimulation of mitogen activated protein kinase activity in A431 cells by low dose ionizing radiation. Radiat Res 1998;149:579-587 https://doi.org/10.2307/3579904
  20. WarnePH,VicianaPR,DownwardJ. Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 1993;364:352-355 https://doi.org/10.1038/364352a0
  21. DentP. Activationofmitogen-activatedprotein kinasekinase by v-Raf in NIH 3T3cells and in vitro. Science 1992;257: 1404-1407 https://doi.org/10.1126/science.1326789
  22. Crews CM,Alessandrini A, EriksonRL. The primary struc tureof MEK,a protein kinase thatphosphorylates theERKgene product. Science 1992;258:478-480 https://doi.org/10.1126/science.1411546
  23. Her JH. Dual phosphorylation and autophosphorylation in mitogen-activated protein (MAP) kinase activation. Biochem J 1993;296:25-31 https://doi.org/10.1042/bj2960025
  24. Anderson NG, Maller JL, Tonks NK, et al. Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase. Nature 1990;343: 651-653 https://doi.org/10.1038/343651a0
  25. Marais R, Wynne J, Treisman R. The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 1993;73:381-393 https://doi.org/10.1016/0092-8674(93)90237-K
  26. Seger R. Purification and characterization of mitogenactivated protein kinase activator(s) from epidermal growth factor-stimulated A431 cells. J Biol Chem 1992;267:14373- 14381
  27. Verheij M, Bose R, Lin XH, et al. Requirement for ceramide- initiated SAPK/JNK signalling in stress-inducedapoptosis. Nature 1996;380:75-79 https://doi.org/10.1038/380075a0
  28. CanmanCE,KastanMB. Signal transduction. Three paths to stress. Nature 1996;384: 213-214 https://doi.org/10.1038/384213a0
  29. Cosulich S, Clarke P. Apoptosis: Does stress kill? Curr Biol 1996;6:1586-1588
  30. Sgambato V, Pages C, Rogard M, et al. Extracellular signal- regulated kinase(ERK)controlsimmediateearly gene induction on corticostriatal stimulation. J Neuroscience 1998;18: 8814-8825
  31. Milas L, Wike J, Hunter NR, et al. Macrophage content of murine sarcomas and carcinomas: Association with tumor growth parameters and tumorradiocurability. Cancer Res 1987;47:1069-1075
  32. SteelGG. Combinationof radiotherapyandchemotherapy.In: Steel GG, ed. Basic Radiation Biology. London: Edward Arnold Publishers, 1993;151-62
  33. Venook AP. Treatment of hepatocellular carcinoma: Too many options? J Clin Oncol 1994;12:1323-1334
  34. Dudley DT, Pang L, Decker SJ, etal. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci U S A 1995;92:7686-7689 https://doi.org/10.1073/pnas.92.17.7686
  35. Simon C, HicksMJ,Nemechek AJ, etal. PD 098059,aninhibitor of ERK1 activation attenuates the in vivo invasiveness of head and neck squamous cell carcinoma. Br J Cancer 1999;80:1412-1419 https://doi.org/10.1038/sj.bjc.6690537
  36. Sebolt-LeopoldJS, DudleyDT,Herrera R, et al. Blockadeofthe MAP kinase pathwaysuppressesgrowthofcolontumors in vivo. Nat Med 1999;5:810-816 https://doi.org/10.1038/10533
  37. Seong J, Kim SH, Suh CO. Enhancement of tumor radioresponse by combined chemotherapy in murine hepatocarcinoma. J Gastroenterol Hepatol 2001;16:883-889 https://doi.org/10.1046/j.1440-1746.2001.02533.x
  38. Park HC, Seong J, Han K H , e t a l . Dose response relationship in local radiotherapy for hepatocellular carcinoma. J Korean Soc Ther Radiol Oncol 2001;19:118-126
  39. Seong J, Keum KC, Han KH, et al. Combined transcatheter arterial chemoembolization and local radiotherapy for unresectablehepatocellularcarcinoma.J Korean Soc Ther Radiol Oncol 1998;16:159-165
  40. Seong J, Hunter N, Milas L. Induction of apoptosis and expression of apoptosisrelatedgene products in response to radiation in murine tumors. J Korean Soc Ther Radiol Oncol 1997;15:187-195
  41. Vrana JA,Grant S, Dent P. Inhibition of the MAPK pathway abrogates BCL2-mediated survival of leukemia cells after exposure to low-dose ionizing radiation. Radiat Res 1999;151:559-569 https://doi.org/10.2307/3580032
  42. Cartee L, Vrana JA, W a n g Z , e t a l . Inhibition of the mitogen activated protein kinase pathway potentiates radiation- induced cell killing via cell cycle arrest attheG2/M transition and independentlyofincreasedsignalingbythe JNK/c-Jun pathway. Int J Oncol 2000;16:413-422