DOI QR코드

DOI QR Code

Prostaglandin E2 Reverses Curcumin-Induced Inhibition of Survival Signal Pathways in Human Colorectal Carcinoma (HCT-15) Cell Lines

  • Shehzad, Adeeb (School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University) ;
  • Islam, Salman Ul (School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University) ;
  • Lee, Jaetae (Department of Nuclear Medicine, Kyungpook National University Hospital) ;
  • Lee, Young Sup (School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University)
  • Received : 2014.07.28
  • Accepted : 2014.10.02
  • Published : 2014.12.31

Abstract

Prostaglandin $E_2$ ($PGE_2$) promotes tumor-persistent inflammation, frequently resulting in cancer. Curcumin is a diphenolic turmeric that inhibits carcinogenesis and induces apoptosis. $PGE_2$ inhibits curcumin-induced apoptosis; however, the underlying inhibitory mechanisms in colon cancer cells remain unknown. The aim of the present study is to investigate the survival role of $PGE_2$ and whether addition of exogenous $PGE_2$ affects curcumininduced cell death. HCT-15 cells were treated with curcumin and $PGE_2$, and protein expression levels were investigated via Western blot. Reactive oxygen species (ROS) generation, lipid peroxidation, and intracellular glutathione (GSH) levels were confirmed using specific dyes. The nuclear factor-kappa B ($NF-{\kappa}B$) DNA-binding was measured by electrophoretic mobility shift assay (EMSA). $PGE_2$ inhibited curcumin-induced apoptosis by suppressing oxidative stress and degradation of PARP and lamin B. However, exposure of cells to the EP2 receptor antagonist, AH6809, and the PKA inhibitor, H89, before treatment with $PGE_2$ or curcumin abolished the protective effect of $PGE_2$ and enhanced curcumin-induced cell death. $PGE_2$ activates PKA, which is required for cAMP-mediated transcriptional activation of CREB. $PGE_2$ also activated the Ras/Raf/Erk pathway, and pretreatment with PD98059 abolished the protective effect of $PGE_2$. Furthermore, curcumin treatment greatly reduced phosphorylation of CREB, followed by a concomitant reduction of $NF-{\kappa}B$ (p50 and p65) subunit activation. $PGE_2$ markedly activated nuclear translocation of $NF-{\kappa}B$. EMSA confirmed the DNA-binding activities of $NF-{\kappa}B$ subunits. These results suggest that inhibition of curcumin-induced apoptosis by $PGE_2$ through activation of PKA, Ras, and $NF-{\kappa}B$ signaling pathways may provide a molecular basis for the reversal of curcumin-induced colon carcinoma cell death.

Keywords

References

  1. Barnes, P.J., and Karin, M. (1997). Nuclear factor-${\kappa}B$: a pivotal transcription factor in chronic inflammatory diseases. New Eng. J. Med. 336, 1066-1071. https://doi.org/10.1056/NEJM199704103361506
  2. Baud, V., and Karin, M. (2009). Is NF-${\kappa}B$ a good target for cancer therapy? Hopes and pitfalls. Nat. Rev. Drug Discov. 8, 33-40. https://doi.org/10.1038/nrd2781
  3. Castellone, M.D., Teramoto, H., Williams, B.O., Druey, K.M., and Gutkind J.S. (2005). Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science 310, 1504-1510. https://doi.org/10.1126/science.1116221
  4. Chen, L., Fischle, W., Verdin, E., and Greene, W.C. (2001). Duration of nuclear NF-${\kappa}B$ action regulated by reversible acetylation. Science 293, 1653-1657. https://doi.org/10.1126/science.1062374
  5. Chowdhury, S., Howell, G.M, Rajput, A., Teggart, C.A., Brattain, L.E., Weber, H.R., Chowdhury, A., and Brattain M.G. (2011). Identification of a novel $TGF{\beta}$/PKA signaling transduceome in mediating control of cell survival and metastasis in colon cancer. PLoS One 6, e19335. https://doi.org/10.1371/journal.pone.0019335
  6. Daniluk, J., Liu, Y., Deng, D., Chu, J. Huang H., Gaiser, S., Cruz-Monserrate, Z., Wang, H., Ji, B., and Logsdon, C.D. (2012). An NF-${\kappa}B$ pathway-mediated positive feedback loop amplifies Ras activity to pathological levels in mice. J. Clin. Invest. 122, 1519-1528. https://doi.org/10.1172/JCI59743
  7. Eibl, G., Bruemmer, D., Okada, Y., Duffy, J.P., Law, R.E., Reber, H.A., and Hines, O.J. (2003). $PGE_2$ is generated by specific COX-2 activity and increases VEGF production in COX-2-expressing human pancreatic cancer cells. Biochem. Biophys. Res. Commun. 306, 887-897. https://doi.org/10.1016/S0006-291X(03)01079-9
  8. Fernando, R.I., and Wimalasena, J. (2004). Estradiol abrogates apoptosis in breast cancer cells through inactivation of BAD: Rasdependent nongenomic pathways requiring signaling through ERK and Akt. Mol. Biol. Cell. 15, 3266-3284. https://doi.org/10.1091/mbc.E03-11-0823
  9. Funk, C.D. (2001). Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871-1875. https://doi.org/10.1126/science.294.5548.1871
  10. Hong, J., Bose, M., Ju, J., Ryu, J.H., Chen, X., Sang, S., Lee, M.J., and Yang, C.S. (2004). Modulation of arachidonic acid metabolism by curcumin and related ${\beta}$-diketone derivatives: effects on cytosolic phospholipase $A_2$, cyclooxygenases and 5-lipoxygenase. Carcinogenesis 25, 1671-1679. https://doi.org/10.1093/carcin/bgh165
  11. Kamiyama, M., Pozzi, A., Yang, L., DeBusk, L.M., Breyer, R.M., and Lin, P.C. (2006). EP2, a receptor for $PGE_2$, regulates tumor angiogenesis through direct effects on endothelial cell motility and survival. Oncogene 25, 7019-7028. https://doi.org/10.1038/sj.onc.1209694
  12. Khan, S., Choi, R.J., Shehzad, O., Kim, H.P., Islam, M.N., Choi, J.S., and Kim, Y.S. (2013). Molecular mechanism of capillarisin-mediated inhibition of MyD88/TIRAP inflammatory signaling in in vitro and in vivo experimental models. J. Ethnopharmacol. 145, 626-637. https://doi.org/10.1016/j.jep.2012.12.001
  13. Kisslov, L., Hadad, N., Rosengraten, M., and Levy, R. (2012). HT-29 human colon cancer cell proliferation is regulated by cytosolic phospholipase $A_2{\alpha}$ dependent $PGE_2$ via both PKA and PKB pathways. Biochim. Biophys. Acta 1821, 1224-1234. https://doi.org/10.1016/j.bbalip.2012.06.005
  14. Krysan, K., Reckamp, K.L., Dalwadi, H., Sharma, S., Rozengurt, E., Dohadwala, M., and Dubinett, S.M. (2005). Prostaglandin $E_2$ activates mitogen-activated protein kinase/Erk pathway signaling and cell proliferation in non-small cell lung cancer cells in an epidermal growth factor receptor-independent manner. Cancer Res. 65, 6275-6281. https://doi.org/10.1158/0008-5472.CAN-05-0216
  15. Lee, B.P., Juvet, S.C., and Zhang, L. (2009) Prostaglandin E2 signaling through E prostanoid receptor 2 impairs proliferative response of double negative regulatory T cells. Int. Immunopharmacol. 9, 534-539. https://doi.org/10.1016/j.intimp.2009.01.023
  16. Leone, V., di Palma, A. Ricchi, P., Acquaviva, F., Giannouli, M., Prisco, A.M., Iuliano, F., and Acquaviva, A.M. (2007). $PGE_2$ inhibits apoptosis in human adenocarcinoma Caco-2 cell line through Ras-PI3K association and cAMP-dependent kinase A activation. Am. J. Physiol. Gastrointest. Liver Physiol. 293, 673-681. https://doi.org/10.1152/ajpgi.00584.2006
  17. Okimotoa, Y., Watanabea, A., Nikia, E., Yamashitab, T., and Noguchi, N. (2000). A novel fluorescent probe diphenyl-1-pyrenylphosphine to follow lipid peroxidation in cell membranes. FEBS Lett. 474, 137-140. https://doi.org/10.1016/S0014-5793(00)01587-8
  18. Pursiheimo, J.P., Kieksi, A., Jalkanen, M., and Salmivirta, M. (2002). Protein kinase A balances the growth factor-induced Ras/ERK signaling. FEBS Lett. 521, 157-164. https://doi.org/10.1016/S0014-5793(02)02864-8
  19. Ricchi, P., di Palma, A.D., Di Matola, T.D., Apicella, A., Fortunato, R., Zarrilli, R., and Acquaviva, A.M. (2003). Aspirin protects Caco-2 cells from apoptosis after serum deprivation through the activation of a phosphatidylinositol 3-kinase/AKT/$/p21^{Cip/WAF1}$ pathway. Mol. Pharmacol. 64, 407-414. https://doi.org/10.1124/mol.64.2.407
  20. Roberts, P.J. and Der, C.J. (2007). Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26, 3291-3310. https://doi.org/10.1038/sj.onc.1210422
  21. Rosner, M., and Hengstschlager, M. (2008). Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1. Hum. Mol. Genet. 17, 2934-248. https://doi.org/10.1093/hmg/ddn192
  22. Sakamoto, K., Maeda, S., Hikiba, Y., Nakagawa, H., Hayakawa, Y., Shibata, W., Yanai, A., Ogura, K., and Omata, M. (2009). Constitutive NF-${\kappa}B$ activation in colorectal carcinoma plays a key role in angiogenesis, promoting tumor growth. Clin. Cancer Res. 15, 2248-2258. https://doi.org/10.1158/1078-0432.CCR-08-1383
  23. Santarpia, L., Lippman, S.M., and El-Naggar, A.K. (2012). Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Exp. Opin. Ther. Targets 16, 103-119. https://doi.org/10.1517/14728222.2011.645805
  24. Sebastia, J., Cristofol, R., Martin, M., Rodriguez-Farre, E., and Sanfeliu, C. (2003). Evaluation of fluorescent dyes for measuring intracellular glutathione content in primary cultures of human neurons and neuroblastoma SH-SY5Y. Cytometry A. 51, 16-25.
  25. Seufert, B.L., Poole, E.M., Whitton, J., Xiao, L., Makar, K.W., Campbell, P.T., Kulmacz, R.J., Baron, J.A., Newcomb, P.A., Slattery, M.L., et al. (2013). $I{\kappa}BK{\beta}$ and $NF{\kappa}B1$, NSAID use and risk of colorectal cancer in the colon cancer family registry. Carcinogenesis 34, 79-85. https://doi.org/10.1093/carcin/bgs296
  26. Six, D.A., and Dennis, E.A. (2000). The expanding superfamily of phospholipase $A_2$ enzymes: classification and characterization. Biochim. Biophys. Acta 1488, 1-19. https://doi.org/10.1016/S1388-1981(00)00105-0
  27. Shehzad, A., and Lee, Y.S. (2013). Molecular mechanisms of curcumin action: signal transduction. Biofactors 39, 27-36. https://doi.org/10.1002/biof.1065
  28. Shehzad, A., Lee, J., Huh, T.L., and Lee, Y.S. (2013a). Curcumin induces apoptosis in human colorectal carcinoma (HCT-15) cells by regulating expression of Prp4 and p53. Mol. Cells 35, 526-532. https://doi.org/10.1007/s10059-013-0038-5
  29. Shehzad, A., Lee, J., and Lee, Y.S. (2013b). Curcumin in various cancers. Biofactors 39, 56-68. https://doi.org/10.1002/biof.1068
  30. Shehzad, A., Lee, J., and Lee, Y.S. (2014). Autocrine prostaglandin $E_2$ signaling promotes promonocytic leukemia cell survival via COX-2 expression and MAPK pathway. BMB Rep. Jun 26. pii: 2794.
  31. Sonoshita, M., Takaku, K., Sasaki, N., Sugimoto, Y., Ushikubi, F., Narumiya, S., Oshima, M., and Yaketo, M.M. (2001). Acceleration of intestinal polyposis through prostaglandin receptor $EP_2$ in $Apc^{Delta716}$Delta716 knockout mice. Nat. Med. 7, 1048-1051. https://doi.org/10.1038/nm0901-1048
  32. Sundaresan, M., Yu, Z.X., Ferrans, C.J., Irani, K., and Finkel, T. (1995). Requirement for generation of $H_2O_2$ for platelet-derived growth factor signal transduction. Science 270, 296-299. https://doi.org/10.1126/science.270.5234.296
  33. Tauskela, J.S., Hewitt, K., Kang, L.P., Comas, T., Gendron, T., Hakim, A., Hogan, M., Durkin, J., and Morley, P. (2001). Evaluation of glutathione-sensitive fluorescent dyes in conical culture. Glia 30, 329-341.
  34. Wang, X., and Klein, R.D. (2007). Prostaglandin $E_2$ induces vascular endothelial growth factor secretion in prostate cancer cells through EP2 receptor-mediated cAMP pathway. Mol. Carcinogen. 46, 912-923. https://doi.org/10.1002/mc.20320
  35. Wang, D., Wang, H., Shi, Q., Katkuri, S., Walhi, W., Desvergne, B., Das, S.K., and DuBois, R.N. (2004). Prostaglandin $E_2$ promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator-activated receptor ${\delta}$. Cancer Cell 6, 285-295. https://doi.org/10.1016/j.ccr.2004.08.011
  36. Wang, S., Liu, Z., Wang, L., and Zhang, X. (2009). NF-${\kappa}B$ signaling pathway, inflammation and colorectal cancer. Cell. Mol. Immunol. 6, 327-334. https://doi.org/10.1038/cmi.2009.43
  37. Yu, L., Wu, W.K.K., Li, Z.J., Li, H.T., Wu, Y.C., and Cho, C.H. (2009). Prostaglandin $E_2$ promotes cell proliferation via protein kinase C/extracellular signal regulated kinase pathway-dependent induction of c-Myc expression in human esophageal squamous cell carcinoma cells. Int. J. Cancer 125, 2540-2546. https://doi.org/10.1002/ijc.24607
  38. Zhang, L., Zhou, W., Velculescu., V.E., Kern, S.E., Hruban, R.H., Hamilton, S.R., Vogelstein, B., and Kinzler, K.W. (1997). Gene expression profiles in normal and cancer cells. Science 276, 1268-1272. https://doi.org/10.1126/science.276.5316.1268

Cited by

  1. Prostaglandin E2inhibits resveratrol-induced apoptosis through activation of survival signaling pathways in HCT-15 cell lines vol.19, pp.6, 2015, https://doi.org/10.1080/19768354.2015.1101398
  2. Curcumin reverses benzidine-induced cell proliferation by suppressing ERK1/2 pathway in human bladder cancer T24 cells vol.68, pp.4, 2016, https://doi.org/10.1016/j.etp.2015.12.003
  3. Spices for Prevention and Treatment of Cancers vol.8, pp.8, 2016, https://doi.org/10.3390/nu8080495
  4. Decursinol angelate inhibits PGE2-induced survival of the human leukemia HL-60 cell line via regulation of the EP2 receptor and NFκB pathway vol.17, pp.9, 2016, https://doi.org/10.1080/15384047.2016.1210740
  5. Prevention of vascular smooth muscle cell proliferation and injury-induced neointimal hyperplasia by CREB-mediated p21 induction: An insight from a plant polyphenol vol.103, 2016, https://doi.org/10.1016/j.bcp.2016.01.015
  6. Is Curcumin a Chemopreventive Agent for Colorectal Cancer? vol.12, pp.1, 2016, https://doi.org/10.1007/s11888-016-0307-8
  7. In vitro Biological Effects of Sulforaphane (SFN), Epigallocatechin-3-gallate (EGCG), and Curcumin on Breast Cancer Cells: A Systematic Review of the Literature 2017, https://doi.org/10.1080/01635581.2017.1359322
  8. Switching from Conventional to Nano-natural Phytochemicals to Prevent and Treat Cancers: Special Emphasis on Resveratrol vol.25, pp.34, 2019, https://doi.org/10.2174/1381612825666191009161018
  9. Application of Three-dimensional (3D) Tumor Cell Culture Systems and Mechanism of Drug Resistance vol.25, pp.34, 2014, https://doi.org/10.2174/1381612825666191014163923
  10. International Union of Basic and Clinical Pharmacology. CIX. Differences and Similarities between Human and Rodent Prostaglandin E2 Receptors (EP1–4) and Prostacyclin Receptor (IP): vol.72, pp.4, 2020, https://doi.org/10.1124/pr.120.019331