DOI QR코드

DOI QR Code

Comparative Proteomic Profiling of Pancreatic Ductal Adenocarcinoma Cell Lines

  • Kim, Yikwon (Department of Biomedical Engineering, Medical Research Center, Seoul National University College of Medicine) ;
  • Han, Dohyun (Department of Biomedical Engineering, Medical Research Center, Seoul National University College of Medicine) ;
  • Min, Hophil (Department of Biomedical Engineering, Medical Research Center, Seoul National University College of Medicine) ;
  • Jin, Jonghwa (Department of Biomedical Engineering, Medical Research Center, Seoul National University College of Medicine) ;
  • Yi, Eugene C. (Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University) ;
  • Kim, Youngsoo (Department of Biomedical Engineering, Medical Research Center, Seoul National University College of Medicine)
  • Received : 2014.07.28
  • Accepted : 2014.10.02
  • Published : 2014.12.31

Abstract

Pancreatic cancer is one of the most fatal cancers and is associated with limited diagnostic and therapeutic modalities. Currently, gemcitabine is the only effective drug and represents the preferred first-line treatment for chemotherapy. However, a high level of intrinsic or acquired resistance of pancreatic cancer to gemcitabine can contribute to the failure of gemcitabine treatment. To investigate the underlying molecular mechanisms for gemcitabine resistance in pancreatic cancer, we performed label-free quantification of protein expression in intrinsic gemcitabine-resistant and -sensitive human pancreatic adenocarcinoma cell lines using our improved proteomic strategy, combined with filter-aided sample preparation, single-shot liquid chromatography-mass spectrometry, enhanced spectral counting, and a statistical method based on a power law global error model. We identified 1931 proteins and quantified 787 differentially expressed proteins in the BxPC3, PANC-1, and HPDE cell lines. Bioinformatics analysis identified 15 epithelial to mesenchymal transition (EMT) markers and 13 EMT-related proteins that were closely associated with drug resistance were differentially expressed. Interestingly, 8 of these proteins were involved in glutathione and cysteine/methionine metabolism. These results suggest that proteins related to the EMT and glutathione metabolism play important roles in the development of intrinsic gemcitabine resistance by pancreatic cancer cell lines.

Keywords

References

  1. Arao, S., Masumoto, A., and Otsuki, M. (2000). Beta1 integrins play an essential role in adhesion and invasion of pancreatic carcinoma cells. Pancreas 20, 129-137. https://doi.org/10.1097/00006676-200003000-00004
  2. Arumugam, T., Ramachandran, V., Fournier, K.F., Wang, H., Marquis, L., Abbruzzese, J.L., Gallick, G.E., Logsdon, C.D., McConkey, D.J., and Choi, W. (2009). Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res. 69, 5820-5828. https://doi.org/10.1158/0008-5472.CAN-08-2819
  3. Bailey, K.M., and Liu, J. (2008). Caveolin-1 up-regulation during epithelial to mesenchymal transition is mediated by focal adhesion kinase. J. Biol. Chem. 283, 13714-13724. https://doi.org/10.1074/jbc.M709329200
  4. Buchholz, M., Braun, M., Heidenblut, A., Kestler, H.A., Kloppel, G., Schmiegel, W., Hahn, S.A., Luttges, J., and Gress, T.M. (2005). Transcriptome analysis of microdissected pancreatic intraepithelial neoplastic lesions. Oncogene 24, 6626-6636. https://doi.org/10.1038/sj.onc.1208804
  5. Burris, H.A., 3rd, Moore, M.J., Andersen, J., Green, M.R., Rothenberg, M.L., Modiano, M.R., Cripps, M.C., Portenoy, R.K., Storniolo, A.M., Tarassoff, P., et al. (1997). Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J. Clin. Oncol. 15, 2403-2413.
  6. Cao, H., Le, D., and Yang, L.X. (2013). Current status in chemotherapy for advanced pancreatic adenocarcinoma. Anticancer Res. 33, 1785-1791.
  7. Carmichael, J., Fink, U., Russell, R.C., Spittle, M.F., Harris, A.L., Spiessi, G., and Blatter, J. (1996). Phase II study of gemcitabine in patients with advanced pancreatic cancer. Br. J. Cancer 73, 101-105. https://doi.org/10.1038/bjc.1996.18
  8. Cavallaro, U., and Christofori, G. (2004). Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat. Rev. Cancer 4, 118-132. https://doi.org/10.1038/nrc1276
  9. Chen, R., Yi, E.C., Donohoe, S., Pan, S., Eng, J., Cooke, K., Crispin, D.A., Lane, Z., Goodlett, D.R., Bronner, M.P., et al. (2005). Pancreatic cancer proteome: the proteins that underlie invasion, metastasis, and immunologic escape. Gastroenterology 129, 1187-1197. https://doi.org/10.1053/j.gastro.2005.08.001
  10. Chen, Y.W., Liu, J.Y., Lin, S.T., Li, J.M., Huang, S.H., Chen, J.Y., Wu, J.Y., Kuo, C.C., Wu, C.L., Lu, Y.C., et al. (2011). Proteomic analysis of gemcitabine-induced drug resistance in pancreatic cancer cells. Mol. BioSyst. 7, 3065-3074. https://doi.org/10.1039/c1mb05125c
  11. Cheung, H.W., Cowley, G.S., Weir, B.A., Boehm, J.S., Rusin, S., Scott, J.A., East, A., Ali, L.D., Lizotte, P.H., Wong, T.C., et al. (2011). Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proc. Natl. Acad. Sci. USA 108, 12372-12377. https://doi.org/10.1073/pnas.1109363108
  12. Choudhary, C., and Mann, M. (2010). Decoding signalling networks by mass spectrometry-based proteomics. Nat. Rev. 11, 427-439. https://doi.org/10.1038/nrm2900
  13. Deer, E.L., Gonzalez-Hernandez, J., Coursen, J.D., Shea, J.E., Ngatia, J., Scaife, C.L., Firpo, M.A., and Mulvihill, S.J. (2010). Phenotype and genotype of pancreatic cancer cell lines. Pancreas 39, 425-435. https://doi.org/10.1097/MPA.0b013e3181c15963
  14. Fonslow, B.R., Stein, B.D., Webb, K.J., Xu, T., Choi, J., Park, S.K., and Yates, J.R., 3rd. (2013). Digestion and depletion of abundant proteins improves proteomic coverage. Nat. Methods 10, 54-56.
  15. Fryer, R.A., Barlett, B., Galustian, C., and Dalgleish, A.G. (2011). Mechanisms underlying gemcitabine resistance in pancreatic cancer and sensitisation by the iMiD lenalidomide. Anticancer Res. 31, 3747-3756.
  16. Furukawa, T., Duguid, W.P., Rosenberg, L., Viallet, J., Galloway, D.A., and Tsao, M.S. (1996). Long-term culture and immortalization of epithelial cells from normal adult human pancreatic ducts transfected by the E6E7 gene of human papilloma virus 16. Am. J. Pathol. 148, 1763-1770.
  17. Griffith, O.W. (1999). Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic. Biol. Med. 27, 922-935. https://doi.org/10.1016/S0891-5849(99)00176-8
  18. Gronborg, M., Kristiansen, T.Z., Iwahori, A., Chang, R., Reddy, R., Sato, N., Molina, H., Jensen, O.N., Hruban, R.H., Goggins, M.G., et al. (2006). Biomarker discovery from pancreatic cancer secretome using a differential proteomic approach. Mol. Cell. Proteomics 5, 157-171. https://doi.org/10.1074/mcp.M500178-MCP200
  19. Gstaiger, M., and Aebersold, R. (2009). Applying mass spectrometrybased proteomics to genetics, genomics and network biology. Nat. Revi. Genet. 10, 617-627. https://doi.org/10.1038/nrg2633
  20. Han, D., Moon, S., Kim, H., Choi, S.E., Lee, S.J., Park, K.S., Jun, H., Kang, Y., and Kim, Y. (2011). Detection of differential proteomes associated with the development of type 2 diabetes in the Zucker rat model using the iTRAQ technique. J. Proteome Res. 10, 564-577. https://doi.org/10.1021/pr100759a
  21. Han, D., Moon, S., Kim, Y., Ho, W.K., Kim, K., Kang, Y., Jun, H., and Kim, Y. (2012). Comprehensive phosphoproteome analysis of INS-1 pancreatic beta-cells using various digestion strategies coupled with liquid chromatography-tandem mass spectrometry. J. Proteome Res. 11, 2206-2223. https://doi.org/10.1021/pr200990b
  22. Hruban, R.H., Goggins, M., Parsons, J., and Kern, S.E. (2000). Progression model for pancreatic cancer. Clin. Cancer Res. 6, 2969-2972.
  23. Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protocols 4, 44-57.
  24. Huanwen, W., Zhiyong, L., Xiaohua, S., Xinyu, R., Kai, W., and Tonghua, L. (2009). Intrinsic chemoresistance to gemcitabine is associated with constitutive and laminin-induced phosphorylation of FAK in pancreatic cancer cell lines. Mol. Cancer 8, 125. https://doi.org/10.1186/1476-4598-8-125
  25. Jameson, K.L., Mazur, P.K., Zehnder, A.M., Zhang, J., Zarnegar, B., Sage, J., and Khavari, P.A. (2013). IQGAP1 scaffold-kinase interaction blockade selectively targets RAS-MAP kinase-driven tumors. Nat. Med. 19, 626-630. https://doi.org/10.1038/nm.3165
  26. Jones, S., Zhang, X., Parsons, D.W., Lin, J.C., Leary, R.J., Angenendt, P., Mankoo, P., Carter, H., Kamiyama, H., Jimeno, A., et al. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801-1806. https://doi.org/10.1126/science.1164368
  27. Juuti, A., Nordling, S., Lundin, J., Louhimo, J., and Haglund, C. (2005). Syndecan-1 expression--a novel prognostic marker in pancreatic cancer. Oncology 68, 97-106. https://doi.org/10.1159/000085702
  28. Kalluri, R., and Weinberg, R.A. (2009). The basics of epithelialmesenchymal transition. J. Clin. Invest. 119, 1420-1428. https://doi.org/10.1172/JCI39104
  29. Kuramitsu, Y., Taba, K., Ryozawa, S., Yoshida, K., Zhang, X., Tanaka, T., Maehara, S., Maehara, Y., Sakaida, I., and Nakamura, K. (2010). Identification of up- and down-regulated proteins in gemcitabine-resistant pancreatic cancer cells using two-dimensional gel electrophoresis and mass spectrometry. Anticancer Res. 30, 3367-3372.
  30. Kuramitsu, Y., Wang, Y., Taba, K., Suenaga, S., Ryozawa, S., Kaino, S., Sakaida, I., and Nakamura, K. (2012). Heat-shock protein 27 plays the key role in gemcitabine-resistance of pancreatic cancer cells. Anticancer Res. 32, 2295-2299.
  31. Li, D., Xie, K., Wolff, R., and Abbruzzese, J.L. (2004). Pancreatic cancer. Lancet 363, 1049-1057. https://doi.org/10.1016/S0140-6736(04)15841-8
  32. Lo, M., Ling, V., Wang, Y.Z., and Gout, P.W. (2008). The xccystine/ glutamate antiporter: a mediator of pancreatic cancer growth with a role in drug resistance. Br. J. Cancer 99, 464-472. https://doi.org/10.1038/sj.bjc.6604485
  33. Locasale, J.W. (2013). Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13, 572-583. https://doi.org/10.1038/nrc3557
  34. Makawita, S., Smith, C., Batruch, I., Zheng, Y., Ruckert, F., Grutzmann, R., Pilarsky, C., Gallinger, S., and Diamandis, E.P. (2011). Integrated proteomic profiling of cell line conditioned media and pancreatic juice for the identification of pancreatic cancer biomarkers. Mol. Cell. Proteomics 10, M111 008599. https://doi.org/10.1074/mcp.M111.008599
  35. Mercurio, A.M., Rabinovitz, I., and Shaw, L.M. (2001). The alpha 6 beta 4 integrin and epithelial cell migration. Curr. Opin. Cell Biol. 13, 541-545. https://doi.org/10.1016/S0955-0674(00)00249-0
  36. Min, H., Han, D., Kim, Y., Cho, J.Y., Jin, J., and Kim, Y. (2014). Label-free quantitative proteomics and N-terminal analysis of human metastatic lung cancer cells. Mol. Cells 37, 457-466. https://doi.org/10.14348/molcells.2014.0035
  37. Mori-Iwamoto, S., Kuramitsu, Y., Ryozawa, S., Mikuria, K., Fujimoto, M., Maehara, S., Maehara, Y., Okita, K., Nakamura, K., and Sakaida, I. (2007). Proteomics finding heat shock protein 27 as a biomarker for resistance of pancreatic cancer cells to gemcitabine. Int. J. Oncol. 31, 1345-1350.
  38. Mori-Iwamoto, S., Kuramitsu, Y., Ryozawa, S., Taba, K., Fujimoto, M., Okita, K., Nakamura, K., and Sakaida, I. (2008). A proteomic profiling of gemcitabine resistance in pancreatic cancer cell lines. Mol. Med. Rep. 1, 429-434.
  39. Pavelka, N., Fournier, M.L., Swanson, S.K., Pelizzola, M., Ricciardi-Castagnoli, P., Florens, L., and Washburn, M.P. (2008). Statistical similarities between transcriptomics and quantitative shotgun proteomics data. Mol. Cell. Proteomics 7, 631-644. https://doi.org/10.1074/mcp.M700240-MCP200
  40. Poland, J., Urbani, A., Lage, H., Schnolzer, M., and Sinha, P. (2004). Study of the development of thermoresistance in human pancreatic carcinoma cell lines using proteome analysis. Electrophoresis 25, 173-183. https://doi.org/10.1002/elps.200305698
  41. Pramanik, K.C., Boreddy, S.R., and Srivastava, S.K. (2011). Role of mitochondrial electron transport chain complexes in capsaicin mediated oxidative stress leading to apoptosis in pancreatic cancer cells. PLoS One 6, e20151. https://doi.org/10.1371/journal.pone.0020151
  42. Radulovich, N., Qian, J.Y., and Tsao, M.S. (2008). Human pancreatic duct epithelial cell model for KRAS transformation. Methods Enzymol. 439, 1-13. https://doi.org/10.1016/S0076-6879(07)00401-6
  43. Rathos, M.J., Joshi, K., Khanwalkar, H., Manohar, S.M., and Joshi, K.S. (2012). Molecular evidence for increased antitumor activity of gemcitabine in combination with a cyclin-dependent kinase inhibitor, P276-00 in pancreatic cancers. J. Transl. Med. 10, 161. https://doi.org/10.1186/1479-5876-10-161
  44. Reynolds, A.B., Daniel, J., McCrea, P.D., Wheelock, M.J., Wu, J., and Zhang, Z. (1994). Identification of a new catenin: the tyrosine kinase substrate p120cas associates with E-cadherin complexes. Mo. Cell. Biol. 14, 8333-8342. https://doi.org/10.1128/MCB.14.12.8333
  45. Samuel, N., and Hudson, T.J. (2012). The molecular and cellular heterogeneity of pancreatic ductal adenocarcinoma. Nat. Rev. Gastroenterol. Hepatol. 9, 77-87. https://doi.org/10.1038/nrgastro.2011.215
  46. Sato, N., Fukushima, N., Maitra, A., Iacobuzio-Donahue, C.A., van Heek, N.T., Cameron, J.L., Yeo, C.J., Hruban, R.H., and Goggins, M. (2004). Gene expression profiling identifies genes associated with invasive intraductal papillary mucinous neoplasms of the pancreas. Am. J. Pathol. 164, 903-914. https://doi.org/10.1016/S0002-9440(10)63178-1
  47. Sato, J., Kimura, T., Saito, T., Anazawa, T., Kenjo, A., Sato, Y., Tsuchiya, T., and Gotoh, M. (2011). Gene expression analysis for predicting gemcitabine resistance in human cholangiocarcinoma. J. Hepatobiliary Pancreat. Sci. 18, 700-711. https://doi.org/10.1007/s00534-011-0376-7
  48. Seike, M., Kondo, T., Fujii, K., Yamada, T., Gemma, A., Kudoh, S., and Hirohashi, S. (2004). Proteomic signature of human cancer cells. Proteomics 4, 2776-2788. https://doi.org/10.1002/pmic.200300795
  49. Singh, A., and Settleman, J. (2010). EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29, 4741-4751. https://doi.org/10.1038/onc.2010.215
  50. Stergachis, A.B., MacLean, B., Lee, K., Stamatoyannopoulos, J.A., and MacCoss, M.J. (2011). Rapid empirical discovery of optimal peptides for targeted proteomics. Nat. Methods 8, 1041-1043. https://doi.org/10.1038/nmeth.1770
  51. Swaney, D.L., Wenger, C.D., and Coon, J.J. (2010). Value of using multiple proteases for large-scale mass spectrometry-based proteomics. J. Proteome Res. 9, 1323-1329. https://doi.org/10.1021/pr900863u
  52. Thiery, J.P., Acloque, H., Huang, R.Y., and Nieto, M.A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell 139, 871-890. https://doi.org/10.1016/j.cell.2009.11.007
  53. Thu, K.L., Radulovich, N., Becker-Santos, D.D., Pikor, L.A., Pusic, A., Lockwood, W.W., Lam, W.L., and Tsao, M.S. (2014). SOX15 is a candidate tumor suppressor in pancreatic cancer with a potential role in Wnt/beta-catenin signaling. Oncogene 33, 279-288. https://doi.org/10.1038/onc.2012.595
  54. Tuveson, D.A., and Neoptolemos, J.P. (2012). Understanding metastasis in pancreatic cancer: a call for new clinical approaches. Cell 148, 21-23. https://doi.org/10.1016/j.cell.2011.12.021
  55. Voulgari, A., and Pintzas, A. (2009). Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim. Biophysica Acta 1796, 75-90.
  56. Wei, S., Gao, X., Du, J., Su, J., and Xu, Z. (2011). Angiogenin enhances cell migration by regulating stress fiber assembly and focal adhesion dynamics. PLoS One 6, e28797. https://doi.org/10.1371/journal.pone.0028797
  57. Wisniewski, J.R., Zougman, A., Nagaraj, N., and Mann, M. (2009). Universal sample preparation method for proteome analysis. Nat. Methods 6, 359-362. https://doi.org/10.1038/nmeth.1322
  58. Wisniewski, J.R., Ostasiewicz, P., and Mann, M. (2011). High recovery FASP applied to the proteomic analysis of microdissected formalin fixed paraffin embedded cancer tissues retrieves known colon cancer markers. J. Proteome Res. 10, 3040-3049. https://doi.org/10.1021/pr200019m
  59. Yu, K.H., Barry, C.G., Austin, D., Busch, C.M., Sangar, V., Rustgi, A.K., and Blair, I.A. (2009). Stable isotope dilution multidimensional liquid chromatography-tandem mass spectrometry for pancreatic cancer serum biomarker discovery. J. Proteome Res. 8, 1565-1576. https://doi.org/10.1021/pr800904z
  60. Zhang, Y., Wen, Z., Washburn, M.P., and Florens, L. (2010). Refinements to label free proteome quantitation: how to deal with peptides shared by multiple proteins. Anal. Chem. 82, 2272-2281. https://doi.org/10.1021/ac9023999
  61. Zhou, J., and Du, Y. (2012). Acquisition of resistance of pancreatic cancer cells to 2-methoxyestradiol is associated with the upregulation of manganese superoxide dismutase. Mol. Cancer Res. 10, 768-777. https://doi.org/10.1158/1541-7786.MCR-11-0378
  62. Zimmermann, G., Papke, B., Ismail, S., Vartak, N., Chandra, A., Hoffmann, M., Hahn, S.A., Triola, G., Wittinghofer, A., Bastiaens, P.I., et al. (2013). Small molecule inhibition of the KRAS-PDEdelta interaction impairs oncogenic KRAS signalling. Nature 497, 638-642. https://doi.org/10.1038/nature12205

Cited by

  1. Keap1–Nrf2 signalling in pancreatic cancer vol.65, 2015, https://doi.org/10.1016/j.biocel.2015.06.017
  2. Proteomic strategies in the search for novel pancreatic cancer biomarkers and drug targets: recent advances and clinical impact vol.13, pp.4, 2016, https://doi.org/10.1586/14789450.2016.1167601
  3. Translating epithelial mesenchymal transition markers into the clinic: Novel insights from proteomics vol.10, 2016, https://doi.org/10.1016/j.euprot.2016.01.003
  4. Pancreatic cancer stromal biology and therapy vol.2, pp.2, 2015, https://doi.org/10.1016/j.gendis.2015.01.002
  5. Proteomics discovery of radioresistant cancer biomarkers for radiotherapy vol.369, pp.2, 2015, https://doi.org/10.1016/j.canlet.2015.09.013
  6. A Comparative Quantitative LC-MS/MS Profiling Analysis of Human Pancreatic Adenocarcinoma, Adjacent-Normal Tissue, and Patient-Derived Tumour Xenografts vol.6, pp.4, 2018, https://doi.org/10.3390/proteomes6040045
  7. Extracellular matrix composition modulates PDAC parenchymal and stem cell plasticity and behavior through the secretome vol.285, pp.11, 2018, https://doi.org/10.1111/febs.14471
  8. BRM270 Inhibits the Proliferation of CD44 Positive Pancreatic Ductal Adenocarcinoma Cells via Downregulation of Sonic Hedgehog Signaling vol.2019, pp.1741-4288, 2019, https://doi.org/10.1155/2019/8620469
  9. Rewiring carbohydrate catabolism differentially affects survival of pancreatic cancer cell lines with diverse metabolic profiles vol.8, pp.25, 2014, https://doi.org/10.18632/oncotarget.17172
  10. Recent advances in proteomic profiling of pancreatic ductal adenocarcinoma and the road ahead vol.14, pp.11, 2014, https://doi.org/10.1080/14789450.2017.1382356
  11. Overcoming chemoresistance in pancreatic cancer cells: role of the bitter taste receptor T2R10 vol.9, pp.4, 2018, https://doi.org/10.7150/jca.21803
  12. Chemoresistance Transmission via Exosome-Mediated EphA2 Transfer in Pancreatic Cancer vol.8, pp.21, 2018, https://doi.org/10.7150/thno.26650
  13. Molecular insights into cancer drug resistance from a proteomics perspective vol.16, pp.5, 2019, https://doi.org/10.1080/14789450.2019.1601561
  14. Gemcitabine‐induced epithelial‐mesenchymal transition‐like changes sustain chemoresistance of pancreatic cancer cells of mesenchymal‐like phenotype vol.58, pp.11, 2019, https://doi.org/10.1002/mc.23090
  15. Analysis of Epithelial-Mesenchymal Transition Metabolism Identifies Possible Cancer Biomarkers Useful in Diverse Genetic Backgrounds vol.10, pp.None, 2014, https://doi.org/10.3389/fonc.2020.01309
  16. Phenotypic Heterogeneity and Plasticity of Cancer Cell Migration in a Pancreatic Tumor Three-Dimensional Culture Model vol.12, pp.5, 2014, https://doi.org/10.3390/cancers12051305
  17. Targeting IGF Perturbs Global Replication through Ribonucleotide Reductase Dysfunction vol.81, pp.8, 2021, https://doi.org/10.1158/0008-5472.can-20-2860
  18. Mechanistic Actions between Garcinia atroviridis Essential Oil and 2 Deoxy-d-glucose in Cultured PANC-1 Human Pancreatic Cancer Cells vol.26, pp.12, 2014, https://doi.org/10.3390/molecules26123518
  19. Role of epithelial-mesenchymal transition in chemoresistance in pancreatic ductal adenocarcinoma vol.9, pp.19, 2014, https://doi.org/10.12998/wjcc.v9.i19.4998
  20. Plasma Based Protein Signatures Associated with Small Cell Lung Cancer vol.13, pp.16, 2014, https://doi.org/10.3390/cancers13163972
  21. Novel 3D µtissues Mimicking the Fibrotic Stroma in Pancreatic Cancer to Study Cellular Interactions and Stroma-Modulating Therapeutics vol.13, pp.19, 2021, https://doi.org/10.3390/cancers13195006