KSII Transactions on Internet and Information Systems (TIIS)
/
제13권5호
/
pp.2509-2528
/
2019
There are various styles of license plates for different countries and use cases that require style-specific methods. In this paper, we propose and illustrate a multi-style license plate recognition system. The proposed system performs a series of processes for license plate candidates detection, structure classification, character segmentation and character recognition, respectively. Specifically, we introduce a license plate structure classification process to identify its style that precedes character segmentation and recognition processes. We use a K-Nearest Neighbors algorithm with pre-training steps to recognize numbers and characters on multi-style license plates. To show feasibility of our multi-style license plate recognition system, we evaluate our system for multi-style license plates covering single line, double line, different backgrounds and character colors on Korean and the U.S. license plates. For the evaluation of Korean license plate recognition, we used a 50 minutes long input video that contains 138 vehicles of 6 different license plate styles, where each frame of the video is processed through a series of license plate recognition processes. From two experiments results, we show that various LP styles can be recognized under 50 ms processing time and with over 99% accuracy, and can be extended through additional learning and training steps.
In a face, there is much information of person's identity. Because of this property, various tasks such as expression recognition, identity recognition and deepfake have been actively conducted. Most of them use the exact frontal view of the given face. However, various directions of the face can be observed rather than the exact frontal image in real situation. The profile (side view) lacks information when comparing with the frontal view image. Therefore, if we can generate the frontal face from other directions, we can obtain more information on the given face. In this paper, we propose a combined style model based the conditional generative adversarial network (cGAN) for generating the frontal face from multi-view images that consist of characteristics that not only includes the style around the face (hair and beard) but also detailed areas (eye, nose, and mouth).
수학학습양식의 4가지 구성요인은 인지적 학습양식에서 정보인식 유형과 정보처리 유형이고 정의적 학습양식에서 수학학습에 대한 태도와 수학학습 환경에 대한 태도이다. 각 요인은 대립하는 두 개의 양식으로 구분되며 정보인식 유형은 시각적 양식과 언어적 양식으로, 정보처리 유형은 전체적 양식과 분석적 양식으로, 수학학습에 대한 태도는 권위목표형과 실용오락형으로, 수학학습 환경에 대한 태도는 내부지향형과 외부지향형으로 나눌 수 있다. 총 8가지의 수학학습양식의 조합에 의하여 16가지 수학학습유형으로 분류된다. 본 연구는 중학교 3학년 학생들을 대상으로 수학학습양식과 수학학습유형에 대한 선호도를 분석하여 학습자의 개인차를 인식하고 효과적인 수업전략을 모색하는데 시사점을 제공하고자 한다.
Most vehicle detection methods have poor vehicle feature extraction performance at night, and their robustness is reduced; hence, this study proposes a night vehicle detection method based on style transfer image enhancement. First, a style transfer model is constructed using cycle generative adversarial networks (cycleGANs). The daytime data in the BDD100K dataset were converted into nighttime data to form a style dataset. The dataset was then divided using its labels. Finally, based on a YOLOv5s network, a nighttime vehicle image is detected for the reliable recognition of vehicle information in a complex environment. The experimental results of the proposed method based on the BDD100K dataset show that the transferred night vehicle images are clear and meet the requirements. The precision, recall, mAP@.5, and mAP@.5:.95 reached 0.696, 0.292, 0.761, and 0.454, respectively.
나날이 심각해지는 교통문제에서 차량에 대한 정보를 이용하여 교통흐름을 개선해 줄 뿐만 아니라, 교통위반 차량을 효율적으로 적발할 수 있다. 차량 번호판은 차량정보를 인식하는데 중요하게 사용될 수 있다. 본 논문에서는 이동식 형태인 차량에 탑재한 카메라를 이용하여 촬영한 영상에서 차량의 번호판을 인식하는 새로운 기법을 제안한다. 여러 단계의 영상처리 과정과 인식 과정을 거쳐서 실시간에 처리할 수 있는 시스템으로 일반 차량뿐 아니라 특장차에 대한 인식도 가능하게 한다. 제안한 기법을 이용한 실제적 환경에서의 영상과 인식에 대한 결과가 실험결과에서 보여진다.
According to the empirical study, the research model has been verified about the introduction of new ubiquitous technology into the Customs Information System. The research model is meaningful in deducing policy for accepting the new ubiquitous technology into the Customs Information System. The organization style is not yet positively accomplished, because of insufficient recognition about the new ubiquitous instrument. The other side the individual style, environmental style and working characteristics are contribute to accept the new ubiquitous environment, because of sufficient of education, usage and recognizing the usefulness of the portal information. It is established the Customs Information System with new ubiquitous technology such as RFID, DM, UCR etc.. for the usefulness and convenience.
본 연구는 수학학습양식(백희수, 2009) 요인 중 인지적 학습양식의 정보인식 유형에 따라 학습자를 시각적 학습자와 언어적 학습자로 구분한 뒤, 각 유형의 학습자들이 인수분해 학습에서 개념을 이해하고 문제를 해결하며 일정한 시간이 지난 뒤 학습방법을 기억하는 데 어떤 차이가 있는지 알아보기 위해 수행되었다. 인수분해 교수-학습방법으로는 대수막대와 공식을 활용하였으며, 시각적/언어적 학습양식을 알아보는 두 가지의 검사지를 이용하여 중학교 2학년 학습자 116명(남 74, 여 42)을 대상으로 정보인식 유형을 조사하고, 두 검사지의 결과가 모두 동일한 양식으로 나온 학습자를 각 유형별로 2명씩 선정하였다. 이들을 대상으로 사전 인터뷰와 진단평가를 실시하고, 1차시의 준비학습과 5차시의 본 수업을 실행하였으며, 모든 수업을 마친 뒤 1차 사후 인터뷰를 실시하였고 일정한 시간이 지난 뒤에는 형성평가와 2차 사후 인터뷰를 실시하였다. 본 연구에서 수집된 자료를 분석함으로써 얻어진 결과를 통해 정보인식 유형에 따라 학습자마다 기억하거나 사용하는 학습방법에 차이가 있다는 것을 확인할 수 있었으며, 시각적 학습자는 시각적이고 구체적인 조작방법을, 언어적 학습자는 언어적이고 형식적인 조작방법을 더 잘 기억하고 사용한다는 것을 알 수 있었다. 따라서 방정식과 함수를 포함하는 수학의 여러 분야에서 중요하게 이용되는 인수분해 학습에서 학습 효과를 향상시키기 위해서는 정보인식 유형이 다른 학생들을 고려하여 대수막대와 공식을 활용한 교수-학습방법이 적절히 이루어져야 한다고 제안하였다.
Internet of Things (IoT) is widely used for biomechanics in sports activities and AHRS(Attitude and Heading Reference System) is a more cost effective solution than conventional high-grade IMUs (Inertial Measurement Units) that only integrate gyroscopes. In this paper, we attach the AHRS to the snowboard to measure the motion data like Air To Fakie, Caballerial and Free Style. In order to reduce the measurement error, we have adopted the sensors equipped with Kalman filtering and also used Euler angle to quaternion conversion to reduce the Gimbal-lock effect. We have tested and evaluated the accuracy and execution time of the pattern recognition algorithms like PCA, ICA, LDA, SVM to show the recognition possibility of it on the basic motions of Snowboarding from the 9-axis trajectory information which is gathered from AHRS sensor. With the result, PCA, ICA have low accuracy, but SVM have good accuracy to use for recognition of basic motions of Snowboarding.
본 논문에서는 기계적인 조작 장치 없이 손동작만으로 컴퓨터를 조작할 수 있는 차세대 인터페이스인 에어 인터페이스를 구현하였다. 에어 인터페이스 시스템 구현을 위해 먼저 적외선의 전반사 원리를 이용하였으며, 이후 획득된 적외선 영상에서 손 영역을 분할한다. 매 프레임에서 분할된 손 영역은 이벤트 처리를 위한 손동작 인식부의 입력으로 사용되고, 최종적으로 개별 제어 이벤트에 맵핑된 손동작 인식을 통하여 일반적인 제어를 수행하게 된다. 본 연구에서는 손영역 검출과 추적, 손동작 인식과정을 위해 구현되어진 영상처리 및 인식 기법들이 소개되며, 개발된 에어 인터페이스 시스템은 길거리 광고, 프레젠테이션, 키오스크 등의 그 활용성이 매우 클 것으로 기대된다.
운전자의 도로 주행 데이터를 데이터베이스화한 정보는 다양하게 이용될 수 있다. 이러한 주행 정보를 이용한다면 운전자의 운전 성향을 분석하는데 도움이 될 것이다. 따라서 본 논문에서는 스마트폰을 이용하여 도로 주행 시의 센서 데이터들을 기록하고 주행 패턴을 인식하는 방법을 제안한다. 운전 성향을 분석하기에 앞서 패턴 별 주행 정보를 제공하기 위해 주행 패턴을 인식하는데 중점을 두었다. 좌회전, U턴, 우회전, 급감속, 급출발, 급가속, 과속방지턱에 해당하는 7개의 패턴을 인식하기 위한 과정으로 데이터 전처리를 통해 이벤트가 발생한 구간을 검출 후, DTW(Dynamic Time Warping) 알고리즘을 이용한 결정 방식을 적용하여 패턴을 인식한다. 제안된 방법은 운전자의 정보 제공을 위해 인식된 패턴과 함께 동시에 녹화된 비디오 스트림도 제공되며, 이는 안전운전시스템이나 운전습관분석시스템의 중요한 요소라 할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.