• Title/Summary/Keyword: inflow time

Search Result 609, Processing Time 0.032 seconds

Gas Dynamical Evolution of Central Regions of Barred Galaxies

  • Seo, U-Yeong;Kim, Ung-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.55.1-55.1
    • /
    • 2011
  • We investigate dynamical evolution of gas in barred galaxies using a high-resolution, grid-based hydrodynamic simulations on two-dimensional cylindrical geometry. Non-axisymmetric gravitational potential of the bar is represented by the Ferrers ellipsoids independent of time. Previous studies on this subject used either particle approaches or treated the bar potential in an incorrect way. The gaseous medium is assumed to be infinitesimally-thin, isothermal, unmagnetized, and initially uniform. To study the effects of various environments on the gas evolution, we vary the gas sound speed as well as the mass of a SMBH located at the center of a galaxy. An introduction of the bar potential produces bar substructure including a pair of dust lane shocks, a nuclear ring, and nuclear spirals. The sound speed affects the position and strength of the bar substructure significantly. As the sound speed increases, the dust lane shocks tend to move closer to the bar major axis, resulting in a smaller-size nuclear ring at the galactocentric radius of about 1 kpc. Nuclear spirals that develop inside a nuclear ring can persist only when either sound speed is low or in the presence of a SMBH; they would otherwise be destroyed by the ring material with eccentric orbits. The mass inflow rates of gas toward the galactic center is also found to be proportional to the sound speed. We find that the sound speed should be 15 km/s or larger if the mass inflow rate is to explain nuclear activities in Seyfert galaxies.

  • PDF

A Fluid Analysis to develop the Damper for Tsunami Prevention in Nuclear Power Plant (원자력 발전소에서 쓰나미 방지용 댐퍼 개발을 위한 유동해석)

  • Chin, Do-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.1
    • /
    • pp.53-59
    • /
    • 2021
  • The purpose of this study is to develop a damper that protects against the dangers of tidal waves since there's no function to block the inflow of large amounts of water into the inside When natural disasters such as tidal waves occur. Therefore, it intended to derive the design data by simulating through flow analysis in order to predict the pressure that a damper configured to open and close manually or automatically receives. It examined the preceding researches first and conducted the flow analysis, to predict the force of the damper installed on the bottom of the building's outside to prevent the inflow of seawater into the inside when natural disaster occurring. As a result, it showed that, in the event of a tsunami, it moved about 170m and the time impacting the damper occurred within about eight seconds, and, at the moment, the damper door was pressured about 17bar. Also, it could identify that the load was approximately 900kN and the force by the fluid was applied to the damper door.

Improving streamflow prediction with assimilating the SMAP soil moisture data in WRF-Hydro

  • Kim, Yeri;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.205-205
    • /
    • 2021
  • Surface soil moisture, which governs the partitioning of precipitation into infiltration and runoff, plays an important role in the hydrological cycle. The assimilation of satellite soil moisture retrievals into a land surface model or hydrological model has been shown to improve the predictive skill of hydrological variables. This study aims to improve streamflow prediction with Weather Research and Forecasting model-Hydrological modeling system (WRF-Hydro) by assimilating Soil Moisture Active and Passive (SMAP) data at 3 km and analyze its impacts on hydrological components. We applied Cumulative Distribution Function (CDF) technique to remove the bias of SMAP data and assimilate SMAP data (April to July 2015-2019) into WRF-Hydro by using an Ensemble Kalman Filter (EnKF) with a total 12 ensembles. Daily inflow and soil moisture estimates of major dams (Soyanggang, Chungju, Sumjin dam) of South Korea were evaluated. We investigated how hydrologic variables such as runoff, evaporation and soil moisture were better simulated with the data assimilation than without the data assimilation. The result shows that the correlation coefficient of topsoil moisture can be improved, however a change of dam inflow was not outstanding. It may attribute to the fact that soil moisture memory and the respective memory of runoff play on different time scales. These findings demonstrate that the assimilation of satellite soil moisture retrievals can improve the predictive skill of hydrological variables for a better understanding of the water cycle.

  • PDF

Variation of Inflow Density Currents with Different Flood Magnitude in Daecheong Reservoir (홍수 규모별 대청호에 유입하는 하천 밀도류의 특성 변화)

  • Yoon, Sung-Wan;Chung, Se-Woong;Choi, Jung-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1219-1230
    • /
    • 2008
  • Stream inflows induced by flood runoffs have a higher density than the ambient reservoir water because of a lower water temperature and elevated suspended sediment(SS) concentration. As the propagation of density currents that formed by density difference between inflow and ambient water affects reservoir water quality and ecosystem, an understanding of reservoir density current is essential for an optimization of filed monitoring, analysis and forecast of SS and nutrient transport, and their proper management and control. This study was aimed to quantify the characteristics of inflow density current including plunge depth($d_p$) and distance($X_p$), separation depth($d_s$), interflow thickness($h_i$), arrival time to dam($t_a$), reduction ratio(${\beta}$) of SS contained stream inflow for different flood magnitude in Daecheong Reservoir with a validated two-dimensional(2D) numerical model. 10 different flood scenarios corresponding to inflow densimetric Froude number($Fr_i$) range from 0.920 to 9.205 were set up based on the hydrograph obtained from June 13 to July 3, 2004. A fully developed stratification condition was assumed as an initial water temperature profile. Higher $Fr_i$(inertia-to-buoyancy ratio) resulted in a greater $d_p,\;X_p,\;d_s,\;h_i$, and faster propagation of interflow, while the effect of reservoir geometry on these characteristics was significant. The Hebbert equation that estimates $d_p$ assuming steady-state flow condition with triangular cross section substantially over-estimated the $d_p$ because it does not consider the spatial variation of reservoir geometry and water surface changes during flood events. The ${\beta}$ values between inflow and dam sites were decreased as $Fr_i$ increased, but reversed after $Fr_i$>9.0 because of turbulent mixing effect. The results provides a practical and effective prediction measures for reservoir operators to first capture the behavior of turbidity inflow.

Flow Prediction by Analytical Response Function (해석적 해법에 의한 흐름의 예측)

  • 윤태훈
    • Water for future
    • /
    • v.8 no.2
    • /
    • pp.93-99
    • /
    • 1975
  • A linear and optimum linear systems have been reviewed in some detail. The procedure of the solution of the Wiener-Hopf equation analytically in time domain is given and the prediction of downstream outflow for given upstream inflow are made. The predicted results are fairly satisfaotory. The intended physical interpretation of the analytical solution could be descriptable but it was found that the evaluation of the parameters of the response function is rather difficult due to complicacy and a great deal of works.

  • PDF

Implementation of Tilting Management System of TTX (틸팅 차량의 열차 관리 시스템의 구현)

  • Kim Hyung-Chul;Choi Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.157-162
    • /
    • 2005
  • This paper describes the system implementation of TMS(Train Management System) to be applied to a TTX(Korea Tilting eXpress). For better safety and reliability of vehicle, increased quantity and fast transmission of data between TC(Train Computer) and CC(Car Computer) and control equipment of train is required. To satisfy these requirements, this system uses RTOS(Real Time OS) so that do realtime data management, And it is implemented to minimize the noise inflow and a signal level reduction of the communication line. Also it is designed to suitable interface of a TTX vehicle and is verified by laboratory test.

  • PDF

A Channel Flood Routing by the Analytical Diffusion Model

  • Yoon, Yong-Nam;Yoo, Chul-Sang
    • Korean Journal of Hydrosciences
    • /
    • v.1
    • /
    • pp.1-14
    • /
    • 1990
  • The analytical diffusion model is first formulated and its characteristics are critically reviewed. The flood events during the 1985-1986 flood seasons in the IHP Pyungchang Representative Basin are routed by this model and are compared with those routed by the kinematic wave model. The present model is proven to be an excellent means of taking the backwater effects due to lateral inflow or downstream river stage variations into consideration in channel routing of flood flows. It also requires much less effort and computing time at a desired station compared to any other reliable flood routing methods.

  • PDF

Mathematical Description of the Volume of Distribution in the Isolated Organ

  • Kim, Chong-Kook;Kim, Yang-Bae
    • Journal of Pharmaceutical Investigation
    • /
    • v.10 no.1
    • /
    • pp.1-3
    • /
    • 1980
  • The model of an isolated organ system has been developed to simulate the kinetic behavior of drug levels in an acting organ or site. The model is developed from basic considerations of drug distribution with hemodynamical and pharmacokinetical meanings. Model: It is considered a situation in which non-metabolic drug substance is injected into the arterial inflow of an isolated organ at constant rate. The volume of distribution and the concentration of drug in the venous outflow can be mathematically expressed as a function of time.

  • PDF

The Effects of Operational and Mechanical Factors on the Performance of Rice-Husk Furnace (왕겨연소기(燃燒機)의 성능(性能)에 영향(影響)을 마치는 설계(設計) 및 작동인자(作動因子)에 관(關)한 연구(硏究))

  • Park, Seung Je;Noh, Sang Ha
    • Journal of Biosystems Engineering
    • /
    • v.8 no.2
    • /
    • pp.39-48
    • /
    • 1983
  • This study was performed to obtain the basic data which could be used for the modification of the manual center-burner-type rice-husk furnace into a small scale automatic type for the multi-purpose use in the farm. For this purpose, first, the utilization feasibility of the rice-husk furnace in the farm was analyzed briefly in aspects of available amount of rice-husk for the fuel, annual operation time and replaceble amount of residential heating energy with rice-husk in the farm. For the experiment a prototype furnace geared with an automatic feeding device was fabricated, and feed rate, mold size and chimney height were changed to investigate the combustion efficiency of rice-husk and thermal efficiency of the furnace. Also, optimum and limiting operational factors were observed in each treatments. The results obtained are summarized as follows. 1. If the rice-husk is intensively used for residential heating in the farm for winter season, on an average 51 percent of the total heating energy can be replaced with the rice-husk. Therefore, development of a small scale automatic rice-husk furnace was recognized to be feasible. 2. The operational condition depending on husk-feed rates was very important factor for successive steady burning operation of the given furnace. When the feed-rate was 1.5 kg/hr, the top of the burning zone should be kept at the position about 55 cm from the bottom of the combustion chamber with the periodic removal of ash (termed as steady state position), which was 18 cm above the mold waist. When the feed rates were 2.4 kg/hr and 3.0 kg/hr, the steady state position was at about 4 cm above the mold waist. 3. The mold size affected inflow rate of air into the furnace and consequently CO content in the exhaust gas. The relatively bigger mold gave positive effect on the air-inflow rate. 4. When the husk-feed rates were 1.5 kg/hr, 2.4 kg/hr, 3.0 kg/hr, the combustion efficiencies of the rice-husk were 98.5%, 97.4% and 95.0%, the thermal efficiencies of the furnace were 93.4%, 93.2% and 87.6%, and CO content in the exhaust gas were 1.21%, 1.03%, and 2.43%, respectively. The air-inflow rates were decreased with the increase of feed rates. When the amount of excess air was 30-40%, the CO content in the exhaust gas was at the minimum level. 5. When the chimney height was lowered from 260 cm to 96 cm, the air-inflow rate was slightly decreased, but the average temperature in the combustion chamber, CO content in the exhaust gas and combustion and thermal efficiencies were not changed significantly. 6. The incidental problems associated with the protytype furnace were accumulation of the ash inside the mold, accumulation of the cinder between the outer-drum of the furnace and the combustion chamber wall, and accumulation of the cinder in the chimney.

  • PDF

Long-Range Transported SO2 Inflow fromAsian Continent to Korea Peninsula Using OMI SO2 Data and HYSPLIT Backward Trajectory Calculations (OMI 이산화황자료와 HYSPLIT 역궤적 계산을 이용한 동북아지역의 장거리 수송되는 이산화황 유입량 산출)

  • Park, Junsung;Hong, Hyunkee;Choi, Wonei;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.743-754
    • /
    • 2014
  • In this present paper, we, for the first time, calculated $SO_2$ inflow from China to Korea peninsula based on OMI $SO_2$ products and HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) backward trajectory calculations. The major factors used to estimate $SO_2$ flux are long range transported $SO_2$ concentration, transport speed of air mass, and thickness of transported air mass layer. The mean and maximum $SO_2$ fluxes are estimated to be 0.81 and $2.11g{\cdot}m^{-2}{\cdot}h^{-1}$, respectively based on OMI products while, those of $SO_2$ fluxes are 0.50 and $1.18g{\cdot}m^{-2}{\cdot}h^{-1}$ respectively using insitu data obtained at the surface. For most cases, larger $SO_2$ inflow values were found at the surface than those estimated for the air mass layer which extends from surface up to 1.5 km. However, increased transport speed of air mass leads to the enhanced $SO_2$ flux at the altitude up to 1.5 km at the receptor sites. Additionally, we calculate uncertainties of $SO_2$ flux using error propagation method.