DOI QR코드

DOI QR Code

Long-Range Transported SO2 Inflow fromAsian Continent to Korea Peninsula Using OMI SO2 Data and HYSPLIT Backward Trajectory Calculations

OMI 이산화황자료와 HYSPLIT 역궤적 계산을 이용한 동북아지역의 장거리 수송되는 이산화황 유입량 산출

  • Park, Junsung (Department of Spatial Information Engineering, Pukyong National University) ;
  • Hong, Hyunkee (Department of Spatial Information Engineering, Pukyong National University) ;
  • Choi, Wonei (Department of Spatial Information Engineering, Pukyong National University) ;
  • Lee, Hanlim (Department of Spatial Information Engineering, Pukyong National University)
  • 박준성 (부경대학교 공간정보시스템공학과) ;
  • 홍현기 (부경대학교 공간정보시스템공학과) ;
  • 최원이 (부경대학교 공간정보시스템공학과) ;
  • 이한림 (부경대학교 공간정보시스템공학과)
  • Received : 2014.12.02
  • Accepted : 2014.12.10
  • Published : 2014.12.31

Abstract

In this present paper, we, for the first time, calculated $SO_2$ inflow from China to Korea peninsula based on OMI $SO_2$ products and HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) backward trajectory calculations. The major factors used to estimate $SO_2$ flux are long range transported $SO_2$ concentration, transport speed of air mass, and thickness of transported air mass layer. The mean and maximum $SO_2$ fluxes are estimated to be 0.81 and $2.11g{\cdot}m^{-2}{\cdot}h^{-1}$, respectively based on OMI products while, those of $SO_2$ fluxes are 0.50 and $1.18g{\cdot}m^{-2}{\cdot}h^{-1}$ respectively using insitu data obtained at the surface. For most cases, larger $SO_2$ inflow values were found at the surface than those estimated for the air mass layer which extends from surface up to 1.5 km. However, increased transport speed of air mass leads to the enhanced $SO_2$ flux at the altitude up to 1.5 km at the receptor sites. Additionally, we calculate uncertainties of $SO_2$ flux using error propagation method.

본 연구에서는 2005년부터 2008년 사이 한반도에서 고농도 $SO_2$가 관측된 날에 대하여 Ozone Monitoring Instrument (OMI) 이산화황자료 및 역궤적 계산을 통해서 중국으로부터 한반도로 장거리 수송되는 이산화황 flux의 계산 방법을 처음으로 소개하였다. 지표공기에서 측정된 이산화황 농도값과 OMI 센서에서 측정된 이산화황 층적분농도값을 이용하여 장거리 수송된 지표공기에서의 이산화황 flux와 지표부터 특정고도 사이 공기층 내에서의 평균 이산화황 flux를 각각 계산하였다. 위성관측을 이용하여 산출된 평균 flux값은 0.81 이고 최대 $2.11g{\cdot}m^{-2}{\cdot}h^{-1}$ 까지 산출되었고, 지점관측을 통한 지표공기로 유입되는 이산화황의 flux값은 평균 0.50 이고 최대 $1.18g{\cdot}m^{-2}{\cdot}h^{-1}$ 까지 산출 되었다. OMI센서와 지점관측 자료를 바탕으로 산출된 각각의 flux를 상호 비교하였으며 대부분의 경우 수용지역의 지표공기로 유입되는 이산화황 flux 값들이 지표부터 최대 1.5 km 사이의 장거리 수송되어 유입된 공기층 내의 평균 이산화황 flux 값들보다 높은 것으로 계산되었다. 발생원 지역에서 강한 저기압이 발견되는 경우를 포함하여 중국 발생원 지역으로부터 장거기 수송된 공기덩어리가 수용지역의 1.0에서 1.5 km 고도로 빠르게 유입되는 경우 지표부터 최대 1.5 km 사이 공기층 내의 평균 이산화황 flux 는 지표공기에서 산출된 flux 보다 높게 산출되는 경향을 보였다. 추가적으로 산출된 $SO_2$ flux값의 오차를 계산하고 오차값에 영향을 주는 인자들에 대해서 논의 하였다.

Keywords

References

  1. Bey, I., D.J. Jacob, R.M. Yantosca, J.A. Logan, B.D. Field, A.M. Fiore, Q. Li, H.Y. Liu, L.J. Mickley, and M.G. Schultz, 2001. Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. Journal of Geophysical Research: Atmospheres (1984-2012), 106(D19): 23073-23095. https://doi.org/10.1029/2001JD000807
  2. Dockery, D.W., J. Cunningham, A.I. Damokosh, L.M. Neas, J.D. Spengler, P. Koutrakis, J.H. Ware, M. Raizenne, and F.E. Speizer, 1996. Health effects of acid aerosols on North American children: respiratory symptoms. Environmental health perspectives, 104(5): 500. https://doi.org/10.1289/ehp.96104500
  3. Haywood, J.M. and K.P. Shine, 1995. The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget. Geophysical Research Letters, 22(5): 603-606. https://doi.org/10.1029/95GL00075
  4. Honninger, G., C.V. Friedeburg, and U. Latt, 2004. Multi axis differential optical absorption spectroscopy (MAX-DOAS). Atmospheric Chemistry and Physics, 4(1): 231-254. https://doi.org/10.5194/acp-4-231-2004
  5. Jaffe, D.A., T. Anderson, D. Covert, R. Kotchenruther, B. Trost, J. Danielson, W. Simpson, T. Bertsen, S. Karlsdottir, D. Blake, J. Harris, G. Carmichael, and I. Uno, 1999. Transport of Asian air pollution to North America. Geophysical Research Letters 26: 711-714. https://doi.org/10.1029/1999GL900100
  6. Jeong, U., H. Lee, J. Kim, W. Kim, H. Hong, and C.K. Song, 2013. Determination of the inter-annual and spatial characteristics of the contribution of long-range transport to $SO_2$ levels in Seoul between 2001 and 2010 based on conditional potential source contribution function (CPSCF). Atmospheric Environment, 70: 307-317. https://doi.org/10.1016/j.atmosenv.2013.01.009
  7. Kahn, R.A., B.J. Gaitley, J.V. Martonchik, D.J. Diner, K.A. Crean, and B. Holben, 2005. Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations. Journal of Geophysical Research: Atmospheres (1984-2012), 110(D10).
  8. Kim, B.G., J.S. Han, and S.U. Park, 2001. Transport of $SO_2$ and aerosol over the Yellow sea. Atmospheric Environment, 35: 727-737. https://doi.org/10.1016/S1352-2310(00)00344-7
  9. Lee, C., R.V. Martin, A. van Donkelaar, G. O'Byrne, N. Krotkov, A. Richter, L.G. Huey, and J.S. Holloway, 2009. Retrieval of vertical columns of sulfur dioxide from SCIAMACHY and OMI: Air mass factor algorithm development, validation, and error analysis. Journal of Geophysical Research: Atmospheres (1984-2012), 114(D22).
  10. Levelt, P.F., G.H. van den Oord, M.R. Dobber, A. Malkki, H. Visser, J. de Vries, P. Stammes, J.O.V. Lundell, and H. Saari, 2006. The ozone monitoring instrument. Geoscience and Remote Sensing, IEEE Transactions on, 44(5): 1093-1101. https://doi.org/10.1109/TGRS.2006.872333
  11. Levy, R.C., L.A. Remer, S. Mattoo, E.F. Vermote, and Y.J. Kaufman, 2007. Second generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. Journal of Geophysical Research: Atmospheres (1984-2012), 112(D13).
  12. Lu, Z., D.G. Streets, Q. Zhang, S. Wang, G.R. Carmichael, Y.F. Cheng, C. Wei, M. Chin, T. Diehl, and Q. Tan, 2010. Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000. Atmospheric Chemistry and Physics, 10(13): 6311-6331. https://doi.org/10.5194/acp-10-6311-2010
  13. Martonchik, J.V., D.J. Diner, K.A. Crean, and M.A. Bull, 2002. Regional aerosol retrieval results from MISR. Geoscience and Remote Sensing, IEEE Transactions on, 40(7): 1520-1531. https://doi.org/10.1109/TGRS.2002.801142
  14. Platt, U. and J. Stutz, 2008. Differential Optical Absorption Spectroscopy: Principles and Applications, Springer Verlag, Heidelberg.
  15. Seinfeld, J.H. and S.N. Pandis, 2006. Atmospheric Chemistry and Physics, second ed. Wiley, New York.
  16. Shin, D.S. and Y.R. Lee, 1997. Geometric Modeling and Coordinate Transformation of Satellite-Based Linear Pushbroom-Type CCD Camera Images, Journal of the Korean Society of Remote Sensing, 13(2): 85-98.
  17. Stohl, A., 1998. Computation, accuracy and applications of trajectories e a review and bibliography. Atmospheric Environment, 32: 947-966. https://doi.org/10.1016/S1352-2310(97)00457-3
  18. Streets, D.G. and S.T. Waldhoff, 2000. Present and future emissions of air pollutants in China: $SO_2$, NOx, and CO, Atmospheric Environment, 34.3: 363-374. https://doi.org/10.1016/S1352-2310(99)00167-3
  19. Streets, D.G., F. Yan, M. Chin, T. Diehl, N. Mahowald, M. Schultz, M. Wild, Y. Wu, and C. Yu, 2009. Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980-2006. Journal of Geophysical Research: Atmospheres (1984-2012), 114(D10).
  20. Sunyer, J., C. Spix, P. Quenel, A. PoncedeLeon, A. Ponka, T. Barumandzadeh, G. Touloumi, L. Bacharova, B. Wojtyniak, J. Vonk, L. Bisanti, J. Schwartz, and K. Katsouyanni, 1997. Urban air pollution and emergency admissions for asthma in four European cities: the APHEA Project. Thorax, 52: 760-765. https://doi.org/10.1136/thx.52.9.760
  21. Environmental Protection Agency (EPA), 1998. National air quality and emission trends report, 1997 (EPA Report No. EPA 454/R-98-016). Research Triangle Park, NC, USA.
  22. Vandaele, A.C., T.C. Simon, J.M. Goilmont, C.M. Carleer, and R. Colin, 1994. NO2 absorption cross section measurement in the UV using Fourier transform spectrometer. Journal of Geophysical Research 99: 25599-25605. https://doi.org/10.1029/94JD02187
  23. Donkelaar, A.V., R.V. Martin, W.R. Leaitch, A.M. Macdonald, T.W. Walker, D.G. Streets, Q. Zhang, E.J. Dunlea, J.L. Jimenez, J.E. Dibb, L.G. Huey, R. Weber, and M.O. Andreae, 2008. Analysis of aircraft and satellite measurements from the Intercontinental Chemical Transport Experiment (INTEX-B) to quantify long-range transport of East Asian sulfur to Canada. Atmospheric Chemistry and Physics, 8(11): 2999-3014. https://doi.org/10.5194/acp-8-2999-2008
  24. Voigt, S., J. Orphal, and J. Burrows, 1999. UV-visible absorption cross-sections of $NO_2$ and $O_3$ at atmospheric temperatures and pressures by FTS. Proc. of the First European Symposium on Atmospheric Measurements from Space (ESAMS-99), European Space Agency, Document ESA WPP-161, 443-465.
  25. von Engeln, A. and J. Teixeira, 2013. A planetary boundary layer height climatology derived from ECMWF reanalysis data. Journal of Climate, 26(17): 6575-6590. https://doi.org/10.1175/JCLI-D-12-00385.1
  26. Whelpdale, D.M., S.R. Dorling, B.B. Hicks, and P.W. Summers, 1996. Atmospheric process. In: Whelpdale, D.M., Kaiser, M.S. (Eds.), Global Acid Deposition Assessment. World Meteorological Organization Global Atmospheric Watch, Geneva, pp. 7e32.
  27. Zhao, Y., S. Wang, L. Duan, Y. Lei, P. Cao, and J. Hao, 2008. Primary air pollutant emissions of coal-fired power plants in China: Current status and future prediction. Atmospheric Environment, 42(36): 8442-8452. https://doi.org/10.1016/j.atmosenv.2008.08.021