DOI QR코드

DOI QR Code

Improvement of Building-Construction Algorithm for Using GIS data and Analysis of Flow and Dispersion around Buildings

GIS 자료사용을 위한 건물 구축 알고리즘 개선 및 건물 주변 흐름과 확산 분석

  • Kwon, A-Rum (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Kim, Jae-Jin (Department of Environmental Atmospheric Sciences, Pukyong National University)
  • 권아름 (부경대학교 환경대기과학과) ;
  • 김재진 (부경대학교 환경대기과학과)
  • Received : 2014.10.23
  • Accepted : 2014.10.30
  • Published : 2014.12.31

Abstract

In this study, we developed a new algorithm which can construct model buildings used as a surface boundary in numerical models using GIS with latitudinal and longitudinal information of building vertices. The algorithm established the outer boundary of a building first, by finding segments passing neighboring two vertices of the building and connecting the segments. Then, the algorithm determined the region inside the outer boundary as the building. The new algorithm overcame the limit that the algorithm developed in the previous study had in constructing concave buildings. In addition, the new algorithm successfully constructed a building with complicated shape. To investigate effects of the modification in building shape caused by the building-construction algorithm on flows and pollutant dispersion around buildings, a computational fluid dynamics model was used and three kinds of building type were considered. In the downwind region, patterns in flow and pollutant dispersion were little affected by the modification in building shape caused. However, because of reduction in air space resulted from the building-shape modification, vortex structure was not resolved or smaller vortex was resolved near the buildings. The changes in flow pattern affected dispersion patterns of scalar pollutants emitted around the buildings.

본 연구에서는 건물 꼭지점의 위 경도 좌표를 제공하는 GIS로부터 수치 모델의 건물 정보를 구축할 수 있는 알고리즘을 개선하였다. 이 알고리즘은 인접한 건물 꼭지점 위 경도 좌표를 지나는 선분을 순차적으로 연결하여 건물 외곽선을 구성하고, 외곽선 내부의 지점을 건물로 인식하기 때문에, Lee et al. (2009)에서 개발한 알고리즘의 한계를 개선하였고, 복잡한 형태의 건물을 실제에 가깝게 재현할 수 있었다. 본 연구에서는 GIS로부터 수치 건물을 구축할 때, 알고리즘 한계에 의해 발생한 건물 형태의 변화가 건물 주변의 흐름과 오염물질 확산에 미치는 영향을 조사하였다. 이를 위해, 알고리즘에 의한 건물 변형이 나타날 수 있는 세 가지 형태의 건물을 대상으로 전산유체역학 모델을 이용한 수치 실험을 수행하였다. 알고리즘 한계에 의해 발생한 건물 변형은 풍하영역의 흐름 패턴에는 상대적으로 작은 영향을 미쳤으나, 건물 사이의 공간에 나타나는 소용돌이와 같은 건물 규모 대기 현상의 수치 모의에는 매우 중요한 영향을 미쳤다. 건물 변형에 따른 건물 사이 공간의 축소는 건물 주위에 나타날 수 있는 소용돌이를 전혀 모의하지 못하거나 소용돌이 규모를 과소 모의 하는 등의 결과를 초래하였다. 건물 변형에 따른 평균 바람장 변화는 건물 주변 지역에서 배출된 스칼라 오염물질의 확산 패턴에도 큰 영향을 미침을 확인할 수 있었다.

Keywords

References

  1. Ashie, Y., K. Cho, and T. Kono, 2007. Large-scale CFD simulation of heat island phenomenon and countermeasures in Tokyo, Annual Report of the Earth Simulator Center.
  2. Baik, J.J., J.J. Kim, and H.J. Fernando, 2003. A CFD Model for Simulating Urban Flow and Dispersion, Journal of Applied Meteorology, 42(11): 1636-1648. https://doi.org/10.1175/1520-0450(2003)042<1636:ACMFSU>2.0.CO;2
  3. Blocken, B., W.D. Janssen, and T. van Hooff, 2011. CFD simulation for pedestrian wind comfort and wind safety in urban areas: General decision framework and case study for the Eindhoven University campus, Environmental Modelling & Software, 30: 15-34.
  4. Buccolieri, R., S.M. Salim, L.S. Leo, S. Di Sabatino, A. Chan, P. Ielpo, G. de Gennaro, and C. Gromke, 2011. Analysis of local scale tree-atmosphere interaction on pollutant concentration in idealized street canyons and application to a real urban junction, Atmospheric Environment, 45(9): 1702-1713. https://doi.org/10.1016/j.atmosenv.2010.12.058
  5. Castro, I.P. and D.D. Apsley, 1997. Flow and dispersion over topography: a comparison between numerical and laboratory data for two-dimensional flow, Atmospheric Environment, 31(6): 893-850. https://doi.org/10.1016/S1352-2310(96)00248-8
  6. Cha, J.G., E.H. Jung, J.W. Ryu, and D.W. Kim, 2007. Constructing a Green Network and Wind Corridor to Alleviate the Urban Heat-Island, Journal of Korean Association of Geographic Information Studies, 10(1): 102-112 (in Korean with English abstract).
  7. Choi, Y.K., K.H. Kim, and C.Y. Lee, 2014. Development of an Integrated DB Management System for GIS-Based Client/Server Data Sharing in Climate and Environment Fields, Journal of Korean Association of Geographic Information Studies, 17(2): 32-43(in Korean with English abstract). https://doi.org/10.11108/kagis.2014.17.2.032
  8. Chu, A.K.M., R.C.W. Kwok, and K.N. Yu, 2005. Study of pollution dispersion in urban areas using Computational Fluid Dynamics (CFD) and Geographic Information System (GIS), Environmental Modelling & Software, 20(3): 273-277. https://doi.org/10.1016/j.envsoft.2004.05.007
  9. Dollner, J. and B. Hagedorn, 2007. Integrating urban GIS, CAD, and BIM data service-based virtual 3D city models, Urban and Regional Data Management-Annual, 157-160.
  10. Goh, I.D., J.H. Choi, E.D. Kim, Y.S. Jeong, and J.M. Lee, 2008. Extracting Building Geometry from BIM for 3-D City Model, The Journal of GIS Association of Korea, 16(2): 249-261 (in Korean with English abstract).
  11. Gromke, C., R. Buccolieri, S. Di Sabatino, and B. Ruck, 2008. Dispersion study in a street canyon with tree planting by means of wind tunnel and numerical investigations-Evaluation of CFD data with experimental data, Atmospheric Environment, 42(37): 8640-8650. https://doi.org/10.1016/j.atmosenv.2008.08.019
  12. Ha C.Y., K.Y., Han, and W.H. Cho, 2010. 2-D Inundation Analysis According to Post-Spacing Density of DEMs from LiDAR Using GIS, Journal of Korean Association of Geographic Information Studies, 13(1): 74-88 (in Korean with English abstract). https://doi.org/10.11108/kagis.2010.13.1.074
  13. Hamlyn, D. and R. Britter, 2005. A numerical study of the flow field and exchange processes within a canopy of urban-type roughness, Atmospheric Environment, 39(18): 3243-3254. https://doi.org/10.1016/j.atmosenv.2005.02.020
  14. Hanna, S.R., M.J. Brown, F.E. Camelli, S.T. Chan, W.J. Coirier, O.R. Hansen, A.H. Huber, S.R. Kim, and R.M Reynolds, 2006. Detailed simulations of atmospheric flow and dispersion in downtown Manhattan: An Application of Five Computational Fluid Dynamics Models, Bulletin of the American Meteorological Society, 87(12): 1713-1726. https://doi.org/10.1175/BAMS-87-12-1713
  15. Hearn, D. and M.P., Baker, 1997. Computer Graphics, C version, Vol. 2, Prentice Hall, pp. 305-310.
  16. Heist, D.K., L.A. Brixey, J. Richmond-Bryant, G.E. Bowker, S.G. Perry, and R.W. Wiener, 2009. The effect of a tall tower on flow and dispersion through a model urban neighborhood, Part 1. Flow characteristics, Journal of Environmental Monitoring, 11(12): 2163-2170. https://doi.org/10.1039/b907135k
  17. Kim, J.J., E. Pardyjak, D.Y. Kim, K.S. Han, and B.H. Kwon, 2014. Effects of Building-Roof Cooling on Flow and Air Temperature in Urban Street Canyons, Asia-Pacific Journal of Atmospheric Sciences, 50(3): 365-375. https://doi.org/10.1007/s13143-014-0023-8
  18. Kneissl, T., S. van Gasselt, and G. Neukum, 2011. Map-projection-independent crater sizefrequency determination in GIS environments-New software tool for ArcGIS, Planetary and Space Science, 59(11-12): 1243-1254. https://doi.org/10.1016/j.pss.2010.03.015
  19. Jackson, D.W.T., J.H.M. Beyers, K. Lynch, J.A.G. Cooper, A.C.W. Baas, and I. Delgado-Fernandez, 2011. Investigation of three-dimensional wind flow behaviour over coastal dune morphology under offshore winds using computational fluid dynamics(CFD) and ultrasonic anemometry, Earth Surface Processes and Landforms, 36(8): 1113-1124. https://doi.org/10.1002/esp.2139
  20. Lee, J.H., J.W. Choi, J.J. Kim, and Y.S. Suh, 2009. The effect of an urban renewal plan on detailed air flow in an urban area, Journal of Korean Association of Geographic Information Studies, 12(2): 69-81 (in Korean with English abstract).
  21. Lee, Y.S. and J.J. Kim, 2011. Effects of an Apartment Complex on Flow and Dispersion in an Urban Area, Atmosphere, 21(1): 95-108 (in Korean with English abstract). https://doi.org/10.14191/ATMOS.2011.21.1.095
  22. Neophytou, M., A. Gowardhan, and M. Brown, 2011. An inter-comparison of three urban wind models using Oklahoma City Joint Urban 2003 wind field measurements, Journal of Wind Engineering and Industrial Aerodynamics, 99(4): 357-368. https://doi.org/10.1016/j.jweia.2011.01.010
  23. Okamoto, E., T. Hashimoto, T. Inoue, and Y. Mitamura, 2003. Blood Compatible Design of a Pulsatile Blood Pump Using Computational Fluid Dynamics and Computer-Aided Design and Manufacturing Technology, Artificial Organs, 27(1): 61-67. https://doi.org/10.1046/j.1525-1594.2003.07183.x
  24. Patankar, S.V., 1980. Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, pp. 197.
  25. Pavageau, M. and M. Schatzmann, 1999. Wind tunnel measurements of concentration fluctuations in an urban street canyon, Atmospheric Environment, 33(24): 3961-3971. https://doi.org/10.1016/S1352-2310(99)00138-7
  26. Song, B.G. and K.H. Park, 2013. Air Ventilation Evaluation at Nighttime for the Construction of Wind Corridor in Urban Area, Journal of Korean Association of Geographic Information Studies, 16(2): 16-29 (in Korean with English abstract). https://doi.org/10.11108/kagis.2013.16.2.016
  27. Stone Jr, B. and M.O. Rodgers, 2007. Urban Form and Thermal Efficiency: How the Design of Cities Influences the Urban Heat Island Effect, Journal of the American Planning Association, 67(2): 186-198. https://doi.org/10.1080/01944360108976228
  28. Van Hooff, T. and B. Blocken, 2009. Coupled urban wind flow and indoor natural ventilation modelling on a high-resolution grid: A case study for the Amsterdam ArenA stadium, Environmental Modelling & Software, 25(1): 51-65. https://doi.org/10.1016/j.envsoft.2009.07.008
  29. Versteeg, H.K. and W. Malalasekera, 1995. An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Longman, Malaysia, pp. 257.
  30. Wong, D.W., F. Cameli, and M. Sonwalkar, 2007. Integrating computational fluid dynamics (CFD) models with GIS: an evaluation on data conversion formats, Geoinformatics 2007, International Society for Optics and Photonics, pp. 675312.
  31. Yakhot, V., S.A. Orszag, S. Thangam, T.B. Gatski, and C.G. Speziale, 1992. Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids, 4: 1510-1520. https://doi.org/10.1063/1.858424
  32. Yang, Y. and Y. Shao, 2007. Numerical simulations of flow and pollution dispersion in urban atmospheric boundary layers, Environmental Modelling & Software, 23(7): 906-921. https://doi.org/10.1016/j.envsoft.2007.10.005
  33. Yoon, H.C. and J.K. Park, 2007. A Study on the Construction of 3D GIS DB by LiDAR, Journal of Korean Association of Geographic Information Studies, 10(2): 171-182 (in Korean with English abstract).

Cited by

  1. A Study on the Characteristics of Flows around Building Groups Using a CFD Model vol.25, pp.3, 2015, https://doi.org/10.14191/Atmos.2015.25.3.501
  2. Analysis on the Observation Environment of Surface Wind Using GIS data vol.31, pp.2, 2015, https://doi.org/10.7780/kjrs.2015.31.2.2
  3. Effects of Differential Heating by Land-Use types on flow and air temperature in an urban area vol.32, pp.6, 2016, https://doi.org/10.7780/kjrs.2016.32.6.5