DOI QR코드

DOI QR Code

Measurement of 2D surface deformation on the Seguam volcano of Alaska using DInSAR Multi-track time-series techniques

DInSAR 멀티 트랙 시계열 기법을 이용한 알라스카 시구암 화산의 2차원 지표변위 관측

  • Lee, Seul-Ki (National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Lee, Chang-Wook (National Institute of Meteorological Research, Korea Meteorological Administration)
  • Received : 2014.10.11
  • Accepted : 2014.12.18
  • Published : 2014.12.31

Abstract

Small BAseline Subset (SBAS) technique using multi master interferograms can be effective to detect surface deformation in forest area. In this paper, The analysis reveals area of 2-dimension surface deformation at Seguam Island in Aleutian Arc., Alaska. We acquired ERS-1/2 data from track 201 and 473 datasets on Seguam Island from 1992 to 2008. This study analyze surface deformation applying Differential Interferometry Synthetic Aperture Radar (DInSAR) and SBAS time series method using two adjacent tracks. As a results, it was calculated that subsidence -1~2 cm in LOS direction and - 2~3 cm in vertical direction. The horizontal direction was repeated contraction and expansion. The observation of 2-dimension displacements explained the volcanic activity on Seguam island. Also, it is believed to be used for basic data to estimate movements of magma source.

Small BAseline Subset (SBAS) 기법은 기선 거리가 짧은 다중시기의 간섭도를 이용하므로 화산과 같은 산악지역을 관측하는데 효과적이다. 본 연구에서는 SBAS기법을 이용하여 알라스카 알류산 열도에 위치한 시구암 화산의 지표 변위에 대해 2차원으로 분석을 수행하였다. 본 연구를 위해 1992년부터 2008년까지 201트랙과 473 트랙의 ERS-1/2 위성자료를 수집하였으며, 각각의 자료에 대하여 차분 간섭기법(Differential Interferometry Synthetic Aperture Radar, DInSAR)과 SBAS 알고리즘을 적용하였고, 지표 변위에 대한 시계열 분석을 수행하였다. 또한, LOS 방향의 지표 변위도를 이용하여 수평 방향과 수직 방향의 지표 변위를 계산하였다. 그 결과, Pyre peak 주변에서 LOS 방향으로는 연간 -1~2 cm의 침하가 나타났으나, 수직 방향으로 계산한 결과는 연간 -2~3 cm의 침하가 나타났고, 수평 방향으로는 수축과 팽창이 반복되었다. 수직 방향과 수평 방향에서의 관측은 화산 활동에 대한 영향을 잘 설명할 수 있기 때문에, 마그마원의 움직임을 감시 할 수 있는 기초자료로 활용될 수 있을 것으로 예상된다.

Keywords

References

  1. Bamler R. and P. Hartl, 1998. Synthetic aperture radar interferometry, Opscience, 14(4).
  2. Berardino P., G. Fornaro, R. Lanari, and E. Sansosti, 2002. A new algorithm for surface deformation monitoring based on small baseline differential interferograms, IEEE Transactions on Geoscience and Remote Sensing, 40: 2375-2383. https://doi.org/10.1109/TGRS.2002.803792
  3. Burgmann R., P.A. Rosen and E.J. Fielding, 2000. Synthetic aperture radar: Interferometry to measure earth's surface toppgraphy and its deformation, Earth Planet. Sci., 28: 169-209. https://doi.org/10.1146/annurev.earth.28.1.169
  4. Cho M.J., L. Zhang and C.W. Lee, 2013. Monitoring of Volcanic Activity of Augustine Volcano, Alaska Using TCPInSAR and SBAS Time-series Techniques for Measuring Surface Deformation, Korean Journal of Remote Sensing, 29(1): 21-34. https://doi.org/10.7780/kjrs.2013.29.1.3
  5. Gabriel A.K., R.M. Goldstein and H.A. Zebker, 1989. Mapping Small Elevation Changes Over Large Areas: Differential Radar Interferometry, J. Geophys. Res., 94(B7): 9183-9191. https://doi.org/10.1029/JB094iB07p09183
  6. Ge L., S. Han and C. Rizos, 2000. Interpolation of GPS results incorporating geophysical and InSAR information, Earth Planets Space, 52: 999-1002. https://doi.org/10.1186/BF03352320
  7. Gens R. and J.L. Genderen. Review Article SAR interferometry-issues, techniques, applications, International Journal of Remote Sensing, 17(10): 1803-1835. https://doi.org/10.1080/01431169608948741
  8. Global Volcanism Program(GVP), http://www.volcano.si.edu/.
  9. Gourmelen N., F. Amelung, F. Casu, M. Manzo and R. Lanari, 2007. Mining-related ground deformation in Crescent Valley, Nevada: Implications for sparse GPS networks, Geophysical Research Letters, 34(9).
  10. Graham, L.C., 1974. Synthetic Interferometer Radar for Topographic Mapping, Proc. IEEE, 62: 763-768. https://doi.org/10.1109/PROC.1974.9516
  11. Griffiths, H.D., 1995. Interferometric Synthetic Aperture Radar (InSAR), London: IEE Electronics & Communication Engineering Journal, 7(6).
  12. Jung H.S., C.W. Lee, J.W. Park, K.D. Kim and J.S. Won, 2008. Improvement of Small Baseline Subset(SBAS) algorithm for measuring timeseries surface deformations from differential SAR interferograms, Korean Journal of Remote Sensing, 24(2): 165-177(in Korean with English abstract). https://doi.org/10.7780/kjrs.2008.24.2.165
  13. Pedersen R. and F. Sigmundsson, 2006. Temporal development of the 1999 intrusive episode in the Eyjafjallajokull volcano, Iceland, derived from InSAR images, Bulletin of Volcanology, 68(4): 377-393. https://doi.org/10.1007/s00445-005-0020-y
  14. Pritchard M.E. and M. Simons, 2004. An InSAR-based survey of volcanic deformation in the southern Andes, Geophysical Research Letters, 31(L15610), doi:10.1029/2004GL020545.
  15. Rosen P.A., S. Hensley, I.R. Joughin, F.K. Li, S.N. Madsen, E, Rodriguez, R.M. Goldstein, 2000. Synthetic Aperture Radar Interferometry. Proc. of the IEEE, Vol. 88(3): 333-382. https://doi.org/10.1109/5.838084
  16. Lee C.W., J.S. Zhong, J.S. Won, and H.S. Jung, 2012. Simulation of time series surface deformation to validate multi-interferogram InSAR processing technique, International Journal of Remote Sensing, 33(22): 7075-7087. https://doi.org/10.1080/01431161.2012.700137
  17. Lee C.W., L. Zhong, J.S. Won, H.S. Jung, and D. Dzurisin, 2013. Dynamic deformation of Seguam Island, Alaska, 1992-2008, from multi-interferogram InSAR processing, Journal of Volcanology and Geothermal Research, 260: 43-51. https://doi.org/10.1016/j.jvolgeores.2013.05.009
  18. Madsen S.N. and H.A. Zebker, 1999. Imaging radar interferometry. In Principles and Applications of Imaging Radar, Manual of Remote Sensing, 2: 359-380.
  19. Massonnet, D. and K.L. Feigl, 1998. Radar interferometry and its application to changes in the earth's surface, Review of Geophysics, 36: 441-500. https://doi.org/10.1029/97RG03139
  20. Massonnet D., M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Feigl, and T. Rabaute, 1993. The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry, Nature, 364(6433): 138-142. https://doi.org/10.1038/364138a0
  21. Miller T.P., R.G. McGimsey, D.H. Richter, J.R. Riehle, C.J. Nye, M.E. Yount, and J.A. Dumoulin, 1998. Catalogue of the historically active volcanoes of Alaska. U S Geol Surv Open-File Rpt., 98-582: 1-104.
  22. Stancliffe R.P.W. and W.A. Kooij, 2001. The use of satellite-based radar interferometry to monitor production activity at the Cold Lake heavy oil field, Alberta, Canada, AAPG Bulletin, 85(5): 781-793.
  23. Wright T., E.P. Barry, and L. Zhong, 2004. Toward mapping surface deformation in three dimensions using InSAR, Geophysical Research Letters, 31(L01607).
  24. Zebker H.A. and R.M. Goldstein, 1986. Topographic mapping from interferometric synthetic aperture radar observations, Journal of Geophysical Research, 91(B5): 4993-4999. https://doi.org/10.1029/JB091iB05p04993
  25. Zhang, L., X.L. Ding, and Z. Lu, 2011. Modeling PSInSAR time series without phase unwrapping, IEEE Transactions on Geoscience and Remote Sensing, 49: 547-556. https://doi.org/10.1109/TGRS.2010.2052625

Cited by

  1. 지진·화산 연구에 대한 위성영상 활용 vol.34, pp.6, 2018, https://doi.org/10.7780/kjrs.2018.34.6.4.1