• Title/Summary/Keyword: inflow concentration

Search Result 373, Processing Time 0.03 seconds

Effects of an Apartment Complex on Flow and Dispersion in an Urban Area (도시 지역에서 아파트 단지가 흐름과 확산에 미치는 영향)

  • Lee, Young-Su;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.21 no.1
    • /
    • pp.95-108
    • /
    • 2011
  • The effects of an apartment complex on flow and pollutant dispersion in an urban area are numerically investigated using a computational fluid dynamics (CFD) model. The CFD model is based on the Reynolds-averaged Navier-Stokes equations and includes the renormalization group k-${\varepsilon}$ turbulence model. The geographic information system (GIS) data is used as an input data of the CFD model. Eight numerical simulations are carried out for different inflow directions and, for each inflow direction, the effects of an apartment complex are investigated, comparing the characteristics of flow and dispersion before and after construction of the apartment complex in detail. The observation data of automatic weather system (AWS) is analyzed. The windrose analysis shows that the wind speed and direction after the construction of the complex are quite different from those before the construction. The construction of the apartment complex resulted in the decrease in wind speed at the downwind region. It is also shown that the wind speed increased partially inside the apartment complex due to the channeling effect to satisfy the mass continuity. On the whole, the wind speed decreased at the downwind region due to the drag effect by the apartment complex. As a result, the passive pollutant concentration increased (decreased) near the downwind region of (within) the apartment complex compared with that before the construction.

Radon adsorption properties of cement board using anthracite (안트라사이트를 혼입한 시멘트 보드의 라돈흡착 특성)

  • Kyoung, In-Soo;Pyeon, Su-Jeong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.232-233
    • /
    • 2018
  • Among the recent environmental pollution, indoor air pollution has an adverse effect on the health of indoor residents. Radon, one of the causes of indoor air pollution, is released from concrete, gypsum board and asbestos slate among building materials. Radon is a primary carcinogen and is a colorless, tasteless, odorless inert gas that adheres to airborne dust and enters the body through breathing. At this time, there is a risk of developing cancer if the alpha rays from the lononggas entering the human body destroys the lung tissue and is continuously exposed to a high concentration of lonon gas. The World Health Organization (WHO) has emphasized the reduction of radon and its exposure to radon by classifying it as a first-level carcinogen, but many people have not recognized it yet, and the research is underdeveloped. Therefore, this study was carried out to investigate the properties of adsorbed coconut radon to prevent the inflow of radon gas, which is an air pollution source of indoor air, and to prevent inflow into the human body.

  • PDF

Settling Characteristics of Water Treatment Plant Sludges by Pretreatment Methods (정수장슬러지의 전처리에 의한 침전특성)

  • Moon, Yong-taik;Lee, Sun-ju
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.627-632
    • /
    • 2008
  • It is necessary to investigate methods for improvement by diagnosing sludge settling characteristics on inflow of slurry to thickener. The results of the settling tests are correlated to determine zone settling velocities at the various sludge solids concentrations. Conditioning of WTP residuals is generally done by either chemical or physical treatment. The settling test was conducted with 1m columns dosing polymer to WTP residuals at various solids concentration. The estimated results for dosing to WTP residuals for a sludge of 2,100 ~ 16,012 mg/L solids concentration were the zone settling velocities of 48.38 ~ 6.8 m/day, supernatant solid concentration of 3.2 ~ 19 mg/L and solid flux of $101.6{\sim}317.61kg/m^3{\cdot}day$. The values for non-polymer treatment were the zone settling velocities of 28.37 ~ 0.12 m/day, supernatent solid concentration of 8.5 ~ 108 mg/L and solid flux of $59.58{\sim}1.92kg/m^2{\cdot}day$. The limiting solid flux value by Yoshioka methods was $4.0kg\;TS/m^3{\cdot}day$ for Non-polymer and $228.0kg\;TS/m^3{\cdot}day$ for dosing polymer. These results are to indicate a possibility of improvement on the thickening characteristics and the quality of supernatant as increasing the settling velocities by dosing polymer to WTP residuals.

Comparison of Nitrogen Removal in Free Water Surface Wetlands Purifying Stream Water with and without Litter Layer on its Bottom (자유수면습지의 잔재물층에 의한 하천수 질소제거 비교)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.6
    • /
    • pp.120-129
    • /
    • 2008
  • Removal rate of $NO_3-N$ and TN in a free water surface wetland system with litter layer on its bottom was compared with that without one. The system was established on floodplain in the down reach of the Gwangju Stream in 2001. Its dimensions were 31 meters in length and 12 meters in width. Water of the stream was funneled into it and its effluent was discharged back into the channel. Average litter layer of 9.6 cm was formed on its bottom in 2007. The layer and above-ground parts of reeds and cattails on the system were eliminated in Spring 2008. Volumes and water quality of inflow and outflow of the system were analyzed from May to November in 2007 and 2008, respectively. Inflow into the system both in 2007 and 2008 averaged approximately $40m^3/day$ and hydraulic residence time both in 2007 and 2008 was about 1.5 days. Average influent $NO_3-N$ concentration in 2007 and 2008 was 2.16 and 2.05 mg/L, respectively and influent TN concentration in 2007 and 2008 averaged 3.98 and 3.89 mg/L, respectively. With a 0.05 significance level, effluent temperatures, influent concentrations of $NO_3-N$ and TN, and stem numbers per square meter and height of the emergent plants showed no difference between the system with litter layer and without one. $NO_3-N$ removal in the system with litter layer and without it averaged 55.59 and 46.06%, respectively and TN retention averaged 57.24 and 48.97%, respectively. Both $NO_3-N$ and TN abatement rates in the system with litter layer were significantly high (p < 0.001) when compared with those without one. The wetland system having litter layer on its bottom was more efficient for $NO_3-N$ and TN retention than that without one.

Comparison of Seasonal Nitrogen Removal by Free-Water Surface Wetlands Planted with Iris pseudacorus L. (노랑꽃창포 자유수면습지의 계절에 따른 질소제거 비교)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.1
    • /
    • pp.121-132
    • /
    • 2011
  • Removal rates of $NO_3$-N and TN in the free-water surface wetland system during winter; December, January, February and March, spring and fall; April, May, October and November, and summer; Jun, July, August and September were investigated. The system was established on floodplain in the downstream reach of the Gwangju Stream in 2008. It measures 50 meters in length and 5.5 meters in width. Iris pseudacorus L. grown in pots for about two years were planted in the system. The water stream was funneled in by gravity and its effluent was discharged back in. Volumes and water quality of inflow and outflow were analyzed from December 2008 to November 2010. The inflow was averaged approximately 350 $m^3/day$ and hydraulic residence time was about 3 hours. Average influent and effluent $NO_3$-N concentration was 3.75 and 3.35 mg/L, respectively and $NO_3$-N retention was amounted to 10.6%. Influent and effluent TN concentration were averaged 4.93 and 4.30 mg/L, respectively and TN abatement reached to 12.9%. One-way ANOVA statistics claimed that the average removal rates of $NO_3$-N and TN during winter, spring and fall, and summer were not always the same (p<0.001). The t-Tests of three pairs among $NO_3$-N removal rates of winter, spring and fall, and summer illustrated that the removal rates of winter ($5.04{\pm}1.94$), spring and fall ($10.53{\pm}2.24$), and summer ($18.61{\pm}2.26$) were significantly different each others (p<0.001). Among TN removal rates, the three pairs of t-Tests of three seasons showed that the removal rates of winter ($5.21{\pm}2.51$), spring and fall ($11.71{\pm}3.12$), and summer ($21.53{\pm}4.86$) were significantly different from each others (p<0.001).

A Study on apply of submerged biofilter for nutrient removal (영양염류 제거를 위한 생물막 공정의 적용에 관한 연구)

  • 안승섭
    • Journal of Environmental Science International
    • /
    • v.9 no.5
    • /
    • pp.415-422
    • /
    • 2000
  • In this study the removal possibility of nutrients of T-P, NH3-N, NO3-N and T-N is examined through a positive experimental study using submerged biofilter of media packing channel method. From the analysis of nutrients removal efficiency for each run of the collected sample following results are obtained. Firstly the result of N/P surveying for inflow shows serious value that excess the limit value of 20 as the values are in the range of 12.0~42.7 and the average is 25.73. Secondly the highest concentration of the incoming NH3-N reaches double of the standard since the concentrations of NH3-N and NO3-N for inflow shows 0.06mg/$\ell$ and 2.5~3.8mg/$\ell$ respectively and the average removal rate which passed the submerged biofilter adopted in this study is a satisfactory level. Next the average removal rate of T-P of 51.5% shows the possiblity of entrophication removal since the removal rate of T-P of 66.8~68.8% in relative low temperature period of RUN 1~2 appeared higher than in RUN 3~6 and T-N shows relatively poor result with the average removal rate of 34.1% And it is known that the bigger BOD/P and BOD/N are the more removal rate increases from the examination result of the relation between BOD/P and BOD/N and the treatment water T-P and T-N to decide the relation with the concentration of organic matters and though that the appropriate proportion is necessary for effective removal of nitrogen and phsophorus.

  • PDF

Comparison of Nitrogen Removal During Plant Growing Season with Non-Growing One in Free Water Surface Wetlands Purifying Stream Water (하천수를 정화하는 자유수면습지의 식물 성장기와 비성장기의 질소제거 비교)

  • Yang, Hong-Mo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.1
    • /
    • pp.82-92
    • /
    • 2010
  • Removal rates of NO3-N and TN in a free water surface wetland system during emergent plant growing season and non-growing were investigated. The system was established on floodplain in the down reach of the Gwangju Stream in 2008. Its dimensions were 46 meters in length and 5 meters in width. Typha angustifloria L. growing in pots about two years were planted on the half area of the system and Zizania latifolia Turcz on the other half. Water of the stream was funneled into it by gravity flow and its effluent was discharged back into it. Volumes and water quality of inflow and outflow were analyzed from October 2008 to September 2009. Inflow into the system averaged approximately 715 $m^3$/day and hydraulic residence time was about 1.5 hr. Average influent and effluent $NO_3$-N concentration was 3.37 and 2.74 mg/L, respectively and $NO_3$-N retention amounted to 18.7%. Influent and effluent TN concentration averaged 4.67 and 3.69 mg/L, respectively and TN abatement reached to 20.9%. $NO_3$-N removal rate (%) during plant growing season ($22.67{\pm}3.70$, mean ${\pm}$ standard error) was significantly high (p<0.001) when compared with that during plant non-growing one ($15.02{\pm}3.23$). TN abatement rate (%) during plant growing season ($27.42{\pm}5.98$) was also significantly high (p<0.001) when compared with that during plant non-growing one ($13.66{\pm}3.08$).

Seasonal Variation of Surface Water Quality in a Catchment Contaminated by $NO_3-N$ (질산성 질소로 오염된 소유역 하천 수질의 계절 변화)

  • Kim Youn-Tae;Woo Nam-Chil;Lee Kwang-Sik;Song Yun-Goo
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.2
    • /
    • pp.20-27
    • /
    • 2005
  • The seasonal variation of water quality was studied in the Hwabongcheon. It runs though a small catchment where shallow groundwater was contaminated with $NO_3-N$ by intensive livestock facilities. A direct inflow of animal waste and incoming of contaminated groundwater affected its water quality. In the dry season, an important factor of water quality in the Hwabongcheon was direct inflow of animal waste. In the wet season, concentrations of $NO_3-N$ in the Hwabongcheon were elevated in spite of being diluted by precipitation. It could be explained by the effect of increased incoming of contaminated groundwater and showed by oxygen and hydrogen isotope values. $NO_3-N$ concentration in the Cheongmicheon was lower than that in the Hwabongcheon, so it increased next a junction. This effect was intense in wet season because $NO_3-N$ concentration in the Hwabongcheon was high.

Estimation Suspended Solids Concentration of the Doam Reservoir under Dry and Wet Weather Conditions (강수조건에 따른 도암호 부유물질 거동 평가)

  • Choi, Jae-Wan;Shin, Dong-Seok;Lim, Kyoung-Jae;Lee, Sang-Soo;Kang, Min-Ji
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.2
    • /
    • pp.113-121
    • /
    • 2012
  • BACKGROUND: The Doam watershed in Korea has been managed for the reduction and the prevention of non-point source pollution since 2007. Especially, the water quality of the Doam reservoir is a primary issue related to the Doam dam reoperation. We have carried out the modeling to evaluate the water quality based on suspended solids (SS) of the Doam watershed and the Doam reservoir. Two powerful hydrological and water quality models (HSPF and CE-QUAL-W2) were employed to simulate the combined processes of water quantity and quality both in the upland watershed of the Doam reservoir and the downstream waterbody. METHODS AND RESULTS: The HSPF model was calibrated and validated for streamflow and SS. The CE-QUAL-W2 was calibrated for water level, water temperature, and SS and was validated for the only water level owing to data lack. With the parameters obtained through the appropriate calibration, SS concentrations of inflow into and in the Doam reservoir were simulated for three years (2008, 2004 and 1998) of the minimum, the average, and the maximum of total annual precipitation during recent 30 years. The annual average SS concentrations of the inflow for 2008, 2004, and 1998 were 8.6, 10.9, and 18.4 mg/L, respectively and those in the Doam reservoir were 9.2, 13.8, and 21.5 mg/L. CONCLOUSION(s): The results showed that more intense and frequent precipitation would cause higher SS concentration and longer SS's retention in the reservoir. The HSPF and the CE-QUAL-W2 models could represent reasonably the SS from the Doam watershed and in the Doam reservoir.

Characteristics of Nitrogen and Phosphorous Loadings from a Paddy Field Area (광역논에서의 질소와 인의 오염부하량 특성)

  • 김진수;오승영;김규성
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.527-532
    • /
    • 1998
  • The inflow and outflow loads of T-N and T-P from a paddy field area during the irrigation period were investigated. For the concentration of T-N and T-P, surface water in paddies showed highest among irrigation water, drainage water and percolation water. For T-N, the average concentration of drainage water is higher than that of irrigation water before middle of June but is lower since. It is shown that the L(load)-Q (discharge) equation of T-N has high correlation for irrigation water, but the L-Q equation of T-P has high correlation for drainage water.

  • PDF