• 제목/요약/키워드: infinite domain

검색결과 192건 처리시간 0.025초

무한요소를 이용한 반무한영역의 추계론적 유한요소해석 (Stochastic FE analysis of semi-infinite domain using infinite elements)

  • 최창근;노혁천
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.11-18
    • /
    • 1998
  • In this paper the stochastic analysis of semi-infinite domain is presented using the weighted integral method, which is expanded to include the infinite finite elements. The semi-infinite domain can be thought as to have more uncertainties than the ordinary finite domain in material constants, which shows the needs of and the importance of the stochastic finite element analysis. The Bettess's infinite element is adopted with the theoretical decomposition of the strain matrix to calculate the deviatoric stiffness of the semi-infinite domains. The calculated value of mean and the covariance of the displacement are revealed to be larger than those given by the finite domain assumptions giving the rational results which should be considered in the design of structures on semi-infinite domains.

  • PDF

개선된 가중적분법과 반무한 영역의 해석 (Improved Weighted Integral Method and Application to Analysis of Semi-infinite Domain)

  • 노혁천;최창근
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.369-376
    • /
    • 2002
  • The stochastic analysis of semi-infinite domain is presented using the weighted integral method, which is improved to include the higher order terms in expanding the displacement vector. To improve the weighted integral method, the Lagrangian remainder is taken into account in the expansion of the status variable with respect to the mean value of the random variables. In the resulting formulae only the 'proportionality coefficients' are introduced in the resulting equation, therefore no additional computation time and memory requirement is needed. The equations are applied in analyzing the semi-infinite domain. The results obtained by the improved weighted integral method are reasonable and are in good agreement with those of the Monte Carlo simulation. To model the semi-infinite domain, the Bettess's infinite element is adopted, where the theoretical decomposition of the strain-displacement matrix to calculate the deviatoric stiffness of the semi-infinite domains is introduced. The calculated value of mean and the covariance of the displacement are revealed to be larger than those given by the finite domain assumptions which is thought to be rational and should be considered in the design of structures on semi-infinite domains.

  • PDF

구조물의 비선형 동적 해석을 위한 무한요소의 개발 (Development of an Infinite Element for Non-linear Dynamic Analysis of Structures)

  • 권민호;한길웅
    • 한국산학기술학회논문지
    • /
    • 제11권3호
    • /
    • pp.1053-1058
    • /
    • 2010
  • 지반과 구조물의 상호작용을 해석하는 한 방법으로 지반을 무한의 영역으로 가정하여 이를 무한요소로 모델링한 후 구조물과 연동하여 해석하는 기법이 사용되었으나 하지만 기존의 동적 무한요소는 대부분 시간영역이 아닌 주파수 영역에서 정식화되었고 중첩의 원리가 적용되어 구조물이나 지반의 비선형 거동을 해석에 포함하기 어렵다. 본 연구에서는 시간영역에서 정식화가 가능하고 비선형 거동해석도 가능한 무한 요소를 개발하였다. 개발된 무한요소를 다량의 유한요소를 사용한 결과와 비교하여 정확도를 검증하였고, 비선형 지반모델을 적용하여 비선형해석이 가능함을 확인하였다. 따라서 개발된 무한요소를 지반-구조물 상호작용에 적용할 수 있으며, 이를 바탕으로 구조물내진 설계에도 활용할 수 있을 것으로 판단된다.

지반-구조물의 상호작용 해석을 위한 해석적 2차원 무한요소 (Development of Analytical Two Dimensional Infinite Elements for Soil-Structure Interaction Analysis)

  • 윤정방;김두기
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.19-26
    • /
    • 1997
  • In this paper, two dimensional analytical infinite elements which can include multiple wave components to model a underlying half-space are developed. Since these elements are expressed clearly and simply using Legendre polynomials of frequencies in frequency domain, these are very economical and efficient in computing the responses of strip foundations in frequency domain and are easily transformed for SSI analysis in time domain. To prove the behavior of the proposed two dimensional analytical infinite elements, vertical, horizontal, and rocking compliances of a rigid strip foundation in layered soils are analyzed and compared with those of Tzong ' Penzie $n^{(17)}$ and with those which calculated by numerical infinite elemen $t^{(1)}$ in frequency domain, and good agreements are noticed between them. As an application for a further study, a new scheme for SSI analysis in time domain are proposed and verified by comparing the displacement responses of the soil with a underlying rock due to a rectangular impulse loading with those of a soil modeled extended FE meshes.soil modeled extended FE meshes.

  • PDF

지반-구조물 상호작용의 시간영역 해석을 위한 무한경계요소 (Infinite Boundary Elements for Soil-Structure Interaction Analysis in Time Domain)

  • 윤정방;최준성
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.137-144
    • /
    • 1994
  • In this study, a new procedure for solving 2-D dynamic problems of semi-infinite medium in time domain by boundary element method (BEM) is presented. Efficient modelling of the far field region, infinite boundary elements are introduced. The shape function of the infinite boundary element is a combination of decay functions and Laguerre functions. Though the present shape functions have been developed for the time domain analysis, they may be also applicable to the frequency domain analysis. Through the response analysis in a 2-D half space under a uniformly distributed dynamic load, it has been found that an excellent accuracy can be achieved compared with the analytical solution

  • PDF

제한공간에서 비예혼합 난류제트 화염의 부상특성 (Characteristics of Lifted Flames in Nonpremixed Turbulent Confined Jets)

  • 차민석;정석호
    • 한국연소학회지
    • /
    • 제1권1호
    • /
    • pp.41-49
    • /
    • 1996
  • Effects of ambient geometry on the liftoff characteristics are experimentally studied for nonpremixed turbulent jet flames. To clarify the inconsistency of the nozzle diameter effect on the liftoff height, the ambiences of finite and infinite domains are studied. For nonpremixed turbulent jet issuing from a straight nozzle to infinite domain, flame liftoff height increases linearly with nozzle exit mean velocity and is independent of nozzle diameter. With the circular plate installed on the upstream of nozzle exit, flame liftoff height is lower with plate at jet exit than without, but flame liftoff characteristics are similar to the case of infinite domain. For the confined jet having axisymmetric wall boundary, the ratio of the liftoff height and nozzle diameter is proportional to the nozzle exit mean velocity demonstrating the effect of the nozzle diameter on the liftoff height. The liftoff height increases with decreasing outer axisymmetric wall diameter. At blowout conditions, the blowout velocity decreases with decreasing outer axisymmetric wall diameter and liftoff heights at blowout are approximately 50 times of nozzle diameter.

  • PDF

명시적 주파수종속 2차원 무한요소를 사용한 지반-구조물 상호작용의 시간영역해석 (Soil-Structure Interaction Analysis in the Time Domain Using Explicit Frequency-Dependent Two Dimensional Infinite Elements)

  • 윤정방;김두기
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.42-49
    • /
    • 1997
  • In this paper, the method for soil-structure interaction analyses in the time domain is proposed. The far field soil region which is the outside of the artificial boundary is modeled by using explicit frequency-dependent two dimensional infinite elements which can include multiple wave components propagating into the unbounded medium. Since the dynamic stiffness matrix of the far field soil region using the proposed infinite elements is obtained explicitly in terms of exciting frequencies and constants in the frequency domain, the matrix can be easily transformed into the displacement unit-impulse response matrix, which corresponds to a convolution integral of it in the time domain. To verify the proposed method for soil-structure interaction analyses in the time domain, the displacement responses due to an impulse load on the surface of a soil layer with the rigid bed rock are compared with those obtained by the method in the frequency domain and those by models with extend finite element meshes. Good agreements have been found between them.

  • PDF

수중 산란체의 수치적 산란해석 (Wave Scattering Analysis of Scatterers Submerged in Water by Using a Hybrid Numerical Approach)

  • 김재환;김세환
    • 한국음향학회지
    • /
    • 제19권4호
    • /
    • pp.84-92
    • /
    • 2000
  • 본 논문에서는 유한요소와 무한요소를 사용하여 수중 산란체의 산란해석을 수행하였다. 무한영역을 유한영역으로 나누어 유한영역은 유한요소를 사용하여 모델링하고 무한/유한 영역의 경계면에서는 비반사조건을 만족시키기 위하여 무한요소를 사용하되 파동 특성이 가미된 IWEE(Infinite Wave Envelope Element)를 사용하였다. 수중 강체구의 산란해석에 유한요소의 차수, 크기 및 유한요소 모델 그리고 IWEE가 미치는 영향을 살펴보았다. 수치적 산란해석에서 인위적 반사를 줄이기 위해서는 유한요소와 IWEE의 연결을 유연하게 하기 위하여 유한요소는 잘게 나누거나 이차요소를 사용하는 것이 좋으며 IWEE에서는 고차를 사용하는 것이 바람직하다.

  • PDF

Time domain earthquake response analysis method for 2-D soil-structure interaction systems

  • Kim, Doo-Kie;Yun, Chung-Bang
    • Structural Engineering and Mechanics
    • /
    • 제15권6호
    • /
    • pp.717-733
    • /
    • 2003
  • A time domain method is presented for soil-structure interaction analysis under seismic excitations. It is based on the finite element formulation incorporating infinite elements for the far field soil region. Equivalent earthquake input forces are calculated based on the free field responses along the interface between the near and far field soil regions utilizing the fixed exterior boundary method in the frequency domain. Then, the input forces are transformed into the time domain by using inverse Fourier transform. The dynamic stiffness matrices of the far field soil region formulated using the analytical frequency-dependent infinite elements in the frequency domain can be easily transformed into the corresponding matrices in the time domain. Hence, the response can be analytically computed in the time domain. A recursive procedure is proposed to compute the interaction forces along the interface and the responses of the soil-structure system in the time domain. Earthquake response analyses have been carried out on a multi-layered half-space and a tunnel embedded in a layered half-space with the assumption of the linearity of the near and far field soil region, and results are compared with those obtained by the conventional method in the frequency domain.