• Title/Summary/Keyword: inference Control

Search Result 662, Processing Time 0.073 seconds

Analysis of Access Authorization Conflict for Partial Information Hiding of RDF Web Document (RDF 웹 문서의 부분적인 정보 은닉과 관련한 접근 권한 충돌 문제의 분석)

  • Kim, Jae-Hoon;Park, Seog
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.2
    • /
    • pp.49-63
    • /
    • 2008
  • RDF is the base ontology model which is used in Semantic Web defined by W3C. OWL expands the RDF base model by providing various vocabularies for defining much more ontology relationships. Recently Jain and Farkas have suggested an RDF access control model based on RDF triple. Their research point is to introduce an authorization conflict problem by RDF inference which must be considered in RDF ontology data. Due to the problem, we cannot adopt XML access control model for RDF, although RDF is represented by XML. However, Jain and Farkas did not define the authorization propagation over the RDF upper/lower ontology concepts when an RDF authorization is specified. The reason why the authorization specification should be defined clearly is that finally, the authorizatin conflict is the problem between the authorization propagation in specifying an authorization and the authorization propagation in inferencing authorizations. In this article, first we define an RDF access authorization specification based on RDF triple in detail. Next, based on the definition, we analyze the authoriztion conflict problem by RDF inference in detail. Next, we briefly introduce a method which can quickly find an authorization conflict by using graph labeling techniques. This method is especially related with the subsumption relationship based inference. Finally, we present a comparison analysis with Jain and Farkas' study, and some experimental results showing the efficiency of the suggested conflict detection method.

Genetically Optimized Hybrid Fuzzy Neural Networks Based on Linear Fuzzy Inference Rules

  • Oh Sung-Kwun;Park Byoung-Jun;Kim Hyun-Ki
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.183-194
    • /
    • 2005
  • In this study, we introduce an advanced architecture of genetically optimized Hybrid Fuzzy Neural Networks (gHFNN) and develop a comprehensive design methodology supporting their construction. A series of numeric experiments is included to illustrate the performance of the networks. The construction of gHFNN exploits fundamental technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms (GAs). The architecture of the gHFNNs results from a synergistic usage of the genetic optimization-driven hybrid system generated by combining Fuzzy Neural Networks (FNN) with Polynomial Neural Networks (PNN). In this tandem, a FNN supports the formation of the premise part of the rule-based structure of the gHFNN. The consequence part of the gHFNN is designed using PNNs. We distinguish between two types of the linear fuzzy inference rule-based FNN structures showing how this taxonomy depends upon the type of a fuzzy partition of input variables. As to the consequence part of the gHFNN, the development of the PNN dwells on two general optimization mechanisms: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the gHFNN, the models are experimented with a representative numerical example. A comparative analysis demonstrates that the proposed gHFNN come with higher accuracy as well as superb predictive capabilities when comparing with other neurofuzzy models.

Efficient Authorization Conflict Detection Using Prime Number Graph Labeling in RDF Access Control (RDF 접근 제어에서 소수 그래프 레이블링을 사용한 효율적 권한 충돌 발견)

  • Kim, Jae-Hoon;Park, Seog
    • Journal of KIISE:Databases
    • /
    • v.35 no.2
    • /
    • pp.112-124
    • /
    • 2008
  • RDF and OWL are the primary base technologies for implementing Semantic Web. Recently, many researches related with them, or applying them into the other application domains, have been introduced. However, relatively little work has been done for securing the RDF and OWL data. In this article, we briefly introduce an RDF triple based model for specifying RDF access authorization related with RDF security. Next, to efficiently find the authorization conflict by RDF inference, we introduce a method using prime number graph labeling in detail. The problem of authorization conflict by RDF inference is that although the lower concept is permitted to be accessed, it can be inaccessible due to the disapproval for the upper concept. Because by the RDF inference, the lower concept can be interpreted into the upper concept. Some experimental results show that the proposed method using the prime number graph labeling has better performance than the existing simple method for the detection of the authorization conflict.

Design of Optimized Multi-Fuzzy Controllers for Air-Conditioning System with Multi-Evaporators (다중 증발기를 갖는 에어컨시스템에 대한 최적화된 Multi-Fuzzy 제어기 설계)

  • Jung, Seung-Hyun;Choi, Jeoung-Nae;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.1
    • /
    • pp.7-12
    • /
    • 2007
  • In this paper, we introduce an approach to design multi-fuzzy controllers for the superheat and the low pressure that have an influence on energy efficiency and stabilization of aft conditioning system. Air conditioning system is composed of compressor, condenser several evaporators and several expansion valves. It is quite difficult to control the air conditioning system because the change of the refrigerant condition give an impact on the overall air conditioning system. In order to solve the drawback, we design multi-fuzzy controllers which control simultaneously both three expansion valve and one compressor for the superheat and the low pressure of air conditioning system. The proposed multi fuzzy controllers are given as two kinds of controller types such as a continuous simplified fuzzy inference type and a discrete fuzzy lookup_table type. Here the scaling factors of each fuzzy controller ate efficiently adjusted by veal coding type Genetic Algorithms. The values of performance index of the conventional type are compared with the simulation results of discrete lookup_table type and continuous simplified inference type.

Multi-FNN Identification Based on HCM Clustering and Evolutionary Fuzzy Granulation

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.194-202
    • /
    • 2003
  • In this paper, we introduce a category of Multi-FNN (Fuzzy-Neural Networks) models, analyze the underlying architectures and propose a comprehensive identification framework. The proposed Multi-FNNs dwell on a concept of fuzzy rule-based FNNs based on HCM clustering and evolutionary fuzzy granulation, and exploit linear inference being treated as a generic inference mechanism. By this nature, this FNN model is geared toward capturing relationships between information granules known as fuzzy sets. The form of the information granules themselves (in particular their distribution and a type of membership function) becomes an important design feature of the FNN model contributing to its structural as well as parametric optimization. The identification environment uses clustering techniques (Hard C - Means, HCM) and exploits genetic optimization as a vehicle of global optimization. The global optimization is augmented by more refined gradient-based learning mechanisms such as standard back-propagation. The HCM algorithm, whose role is to carry out preprocessing of the process data for system modeling, is utilized to determine the structure of Multi-FNNs. The detailed parameters of the Multi-FNN (such as apexes of membership functions, learning rates and momentum coefficients) are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization (predictive) abilities of the model. To evaluate the performance of the proposed model, two numeric data sets are experimented with. One is the numerical data coming from a description of a certain nonlinear function and the other is NOx emission process data from a gas turbine power plant.

Multiple Path-planning of Unmanned Autonomous Forklift using Modified Genetic Algorithm and Fuzzy Inference system (수정된 유전자 알고리즘과 퍼지 추론 시스템을 이용한 무인 자율주행 이송장치의 다중경로계획)

  • Kim, Jung-Min;Heo, Jung-Min;Kim, Sung-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1483-1490
    • /
    • 2009
  • This parer is presented multiple path-planning of unmanned autonomous forklift using modified genetic algorithm and fuzzy inference system. There are a task-level feedback method and a method that path is dynamically replaned in realtime while the autonomous vehicles are moving by means of an optimal algorithm for existing multiple path-planning. However, such methods cause malfunctions and inefficiency in the sense of time and energy, and path-planning should be dynamically replanned in realtime. To solve these problems, we propose multiple path-planning using modified genetic algorithm and fuzzy inference system and show the performance with autonomous vehicles. For experiment, we designed and built two autonomous mobile vehicles that equipped with the same driving control part used in actual autonomous forklift, and test the proposed multiple path-planning algorithm. Experimental result that actual autonomous mobile vehicle, we verified that fast optimized path-planning and efficient collision avoidance are possible.

A Study on Dimming Control of Fluorescent Lamp with the Aid of Fuzzy Inference Method (퍼지추론방법에 의한 형광등의 디밍 제어에 대한 연구)

  • Baek, Jin-Yeol;Lee, In-Tae;Oh, Sung-Kwun;Jang, Seong-Whan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.911-917
    • /
    • 2008
  • In this paper. we introduce and investigate new architectures and comprehensive design methodologies of intelligent dimming converter and evaluate the proposed model and the system through a series of numeric experiments. The intelligent dimming converter is developed by using the regression polynomial fuzzy model. In this paper, we put emphasis on the design of electronic ballast based on intelligent dimming converter and the energy saving according to the day-light and the user setting by applying the intelligent model to a fluorescent lamp. We show the superiority of the proposed intelligent dimming converter through the evaluation of performance with conventional electronic ballast by applying the intelligent model to real systems.

Implementation and Performance Analysis of An Optimal Energy Management System Using Data Inference and Cloud Hosting Scheme (데이터추론 및 클라우드 호스팅 기법을 활용한 최적 에너지 관리시스템 구현 및 성능분석)

  • Kim, Kyung-Shin;Kang, Moon-Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.51-57
    • /
    • 2016
  • In this paper, we propose an optimal energy management system using the data inference scheme and the cloud hosting technique in order to improve the efficiency of the energy management. We have been interested in the issue that the energy-saving and efficient management techniques are very useful for reducing the production and supply of energy. The energy management system refers to the control and management system in order to enable the efficient use of energy and also to maintain a comfortable and functional working environment effectively with the help of a computer. The proposed system controls a variety of equipment for energy management, and also gets the data for the inference from the changes in energy consumption environment, which is implemented to enable efficient energy management by adapting and controlling the changes optimally in the working environment. In order to evaluate the performance of the implemented system, some experiments have been performed under consideration of the monthly electric power consumption on the server that the inference engine is operating for the target facilities. Finally, the results show that the proposed system has a good performance.

Design and Implementation of Knowledge Base System for Fault Diagnosis (고장진단을 위한 지식기반 시스템의 설계 및 구현)

  • Jeon, Keun-Hwan;Shin, Sung-Yun;Shin, Jeong-Hun;Lee, Yang-Won;Ryu, Keun-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.6
    • /
    • pp.57-69
    • /
    • 2001
  • Expert system is one of AI area. It simulates the human's way of thinking to give solutions of problem in many applications. Most expert system consists of many components such as inference engine, knowledge base, and so on. Especially the performance of expert system depend on the control of efficiency of inference engine. Inference engine has to get features; first, if possible to minimize restrictions when it constructed the knowledge base. second, it has to serve various kinds of inferencing methods. In this paper we propose knowledge scheme for representing domain knowledge in ease, knowledge implementation technique for inferencing, and integrated knowledge-base engine with blackboard and inference engine. And we describe a expert system prototype that implemented in this paper using proposed methods, it perform diagnose about heavy industrial device. The fault diagnosis system prototype has been studied in this paper will be practical foundation in the research area of knowledge based system.

  • PDF

Intelligent Traffic Light Control using Fuzzy Method (퍼지 기법을 이용한 지능형 교통 신호 제어)

  • Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1593-1598
    • /
    • 2012
  • In this paper, we propose an intelligent signal control method based on fuzzy logic applicable in real time. We design membership functions to model occupied time and the number of vehicles for each lane. A priority for each signal phase is computed by the popular Max-Min fuzzy inference based on control rules and membership degrees of prepared two functions at any given time. A tie breaking scheme is considering weighted sum of the rate of occupied time per number of vehicles in that block and the standard deviation of these blocks. Only a signal phase with the highest priority is opened and all others are closed and the duration of the phase opening is computed proportional to the rate of number of weighting vehicles in that signal per all weighted vehicles. The simulation result shows that the proposed method is more efficient than the static control in all simulation conditions in $2{\times}3$ experimental designs with the number of vehicles in intersection and congestion degrees that have all three levels.