Design and Implementation of Knowledge Base System for Fault Diagnosis

고장진단을 위한 지식기반 시스템의 설계 및 구현

  • 전근환 (군장대학 컴퓨터응용학부) ;
  • 신성윤 (군장대학 컴퓨터응용학부) ;
  • 신정훈 (익산대학 전자계산科) ;
  • 이양원 (군산대학교 컴퓨터정보과학과) ;
  • 유근호 (충북대학교 컴퓨터과학과)
  • Published : 2001.11.25

Abstract

Expert system is one of AI area. It simulates the human's way of thinking to give solutions of problem in many applications. Most expert system consists of many components such as inference engine, knowledge base, and so on. Especially the performance of expert system depend on the control of efficiency of inference engine. Inference engine has to get features; first, if possible to minimize restrictions when it constructed the knowledge base. second, it has to serve various kinds of inferencing methods. In this paper we propose knowledge scheme for representing domain knowledge in ease, knowledge implementation technique for inferencing, and integrated knowledge-base engine with blackboard and inference engine. And we describe a expert system prototype that implemented in this paper using proposed methods, it perform diagnose about heavy industrial device. The fault diagnosis system prototype has been studied in this paper will be practical foundation in the research area of knowledge based system.

전문가 시스템은 인공지능의 한 분야로서 인간의 사고방식을 모방함으로써 다양한 분야에서 야기되는 문제들을 해결해준다. 대부분의 전문가 시스템은 추론엔진과 지식베이스등과 같은 많은 요소들로 구성된다. 특히 전문가 시스템의 성능은 추론엔진의 효율성에 의해 좌우된다 이러한 추론 엔진은 지식베이스가 구축될 때, 가능한한 적은 제약성을 가져야 함은 물론, 다양한 추론 방법을 제공해야 한다는 특정을 갖고 있어야 한다. 이 논문에서는 도메인 지식 표현을 위한 지식스키마와, 추론을 위한 지식구현 기법, 그리고 블랙보드와 추론엔진을 혼합한 지식베이스 엔진을 제안한다. 그리고 제안한 기법들을 이용하여 구축한 중공업 장비 진단 전문가 시스템에 대해서 설명한다. 이 논문에서 연구한 고장진단 지식기반 시스템은 지식기반 시스템 연구분야의 실질적 기반이 될 수 있을 것이다.

Keywords

References

  1. Rychener, M., 'Expert System for Engineering Design', Expert Systems, 2(1), 1985, pp.30-44 https://doi.org/10.1111/j.1468-0394.1985.tb00448.x
  2. Miller, R.K. and T.C. Walker, 'Artificial Intelligence Applicaions in Business Management', Prentice-Hall, 1988
  3. Waterman, D.A., 'A Guide to Expert Systems. Reading', MA:Addison-Wesley, 1986
  4. Shortliffe, E.H., S.G. Axline, B.G. Buchanan, T.C. Merigan and S.N. Cohen, 'An Artificial Intelligence Program to Advise Physicians Regarding Antimicrobial Therapy', Computers and Biomedical Research, Vol.6, 1973, pp.544-560 https://doi.org/10.1016/0010-4809(73)90029-3
  5. Szolovits, P. and S.G. Pauker, 'Categorical and Probabilistic Reasoning in Medical Diagnosis', Artificial Intelligence, Vol.11, 1978, pp.115-44 https://doi.org/10.1016/0004-3702(78)90014-0
  6. Moti Schneider, Abraham Kandel, Gideon Langholz, and Gerard Chew, 'Fuzzy Expert System Tools', John Wiley & Sons Ltd., 1996
  7. Jeong Hun Shin, Myoung Ryun Oh, Kwang Jin Oh, Yang Won Ryee, Keun Ho Ryu, and Young Hun Kim, 'Design and Implementation of ECBM for Inference Engine', The Transactions of the KOREA Information Processing Society, Vol. 4, No 12. 1997
  8. Giarratano, Joseph and Gary Riley, 'Expert System:principles and programming', PWS Publishing Company, 1994
  9. Newton S. Lee, 'Programming with P-Shell', IEEE EXPERT, Summer 1986
  10. Sanja Vranes and Mladen Stanojevie, 'Prolog/Rex-A way to Extend Prolog for Better Knowledge Representation', IEEE Trans. on Knowledge and Data Engineering, 6(1), Feb. 1994 https://doi.org/10.1109/69.273023
  11. Calmet, J., I.A. Tjandra, and G. Bitlencourt, 'MANTRA:A shell for Hybrid knowledge Representation', IEEE, 0-8186-2300-4191, 1991
  12. Frederick Hayes-Roth, 'Rule-Based Systems', Communications of the ACM, 28(9), Sep. 1985 https://doi.org/10.1145/4284.4286
  13. Keravnou, E.T. and L. Johnson, 'Competent Expert Systems:A case study in fault diagnosis', Kogan Page Ltd., 1986
  14. Kim, W., 'Introduction to Object-Oriented Databases', MIT Press, 1990
  15. Robinson, D., 'Object-Oriented Software System', Byte, Aug. 1981
  16. Schmoldt, L. Damiel and H. Michael Rauscher, 'Building Knowledge-based systems for Natural Resource management', ITP, 1996
  17. Forgy, C.L., 'Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem', Artificial Intelligence 19, 1982, pp.17-37 https://doi.org/10.1016/0004-3702(82)90020-0
  18. Hanson, N. Eric and Yu-Wand Wang, 'A Performance Comparison of the Rete and TREAT Algorithms for Testing Database Rule Conditions', IEEE, 1992 https://doi.org/10.1109/ICDE.1992.213202
  19. Daniel P. Miranker. 'TREAT:A better match algorithm for AI production system', In Proc. AAAI National Conference on Artificial Intelligence, Aug. 1987, pp.42-47
  20. Frederick Hayes-Roth, Victor Lesser, 'Focus of Attention in the Hearsay-II Speech Understanding Systems', Proc. of IJCAI-77, 1977, pp.27-35
  21. Nii, H.P., E. Feigenbaum, J. Anton and A.J. Rockmore, 'Signal-to-Symbol Transformatio n:HASP/SIAP Case Study', The AI Magazine, 3(1), 1982, pp.23-35
  22. Nii, H.P., 'The Blackboard Model of Problem Solving', AI Magazine, 7(2), 1986
  23. Scales, J. Daniel, 'Efficient Matching Algorithms for the SOAR/OPS5 production system', STAN-CS-86-1124, June 1986