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Genetically Optimized Hybrid Fuzzy Neural Networks Based on
Linear Fuzzy Inference Rules

Sung-Kwun Oh, Byoung-Jun Park, and Hyun-Ki Kim

Abstract: In this study, we introduce an advanced architecture of genetically optimized Hybrid
Fuzzy Neural Networks (gHFNN) and develop a comprehensive design methodology
supporting their construction. A series of numeric experiments is included to illustrate the
performance of the networks. The construction of gHFNN exploits fundamental technologies of
Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms
(GAs). The architecture of the gHFNNs results from a synergistic usage of the genetic
optimization-driven hybrid system generated by combining Fuzzy Neural Networks (FNN)
with Polynomial Neural Networks (PNN). In this tandem, a FNN supports the formation of the
premise part of the rule-based structure of the gHFNN. The consequence part of the gHFNN is
designed using PNNs. We distinguish between two types of the linear fuzzy inference rule-
based FNN structures showing how this taxonomy depends upon the type of a fuzzy partition
of input variables. As to the consequence part of the gHFNN, the development of the PNN
dwells on two general optimization mechanisms: the structural optimization is realized via GAs
whereas in case of the parametric optimization we proceed with a standard least square method-
based learning. To evaluate the performance of the gHFNN, the models are experimented with
a representative numerical example. A comparative analysis demonstrates that the proposed
gHFNN come with higher accuracy as well as superb predictive capabilities when comparing
with other neurcfuzzy models.

Keywords: Genetically optimized hybrid fuzzy neural networks, computational intelligence,
linear fuzzy inference rule-based fuzzy neural networks, genetically optimized polynomial
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neural networks, design procedure.

1. INTRODUCTION

Recently, a lot of attention has been devoted
towards advanced techniques of modeling complex
systems inherently associated with nonlinearity, high-
order dynamics, time-varying behavior, and imprecise
measurements. [t is anticipated that efficient modeling
techniques should allow for a selection of pertinent
variables and in this way help cope with
dimensionality of the problem at hand. The
omnipresent modeling tendency is the one that
exploits techniques of Computational Intelligence (CT)
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by embracing fuzzy modeling [2-6], neurocomputing
[6], and genetic optimization [7-9]. Especially the two
of the most successful approaches have been the
hybridization attempts made in the framework of CI
[10,11]. Neuro-fuzzy systems are one of them [12-17].
A different approach to hybridization leads to genetic
fuzzy systems. Lately to obtain a highly beneficial
synergy effect, the neural fuzzy systems and the
genetic fuzzy systems hybridize the approximate
inference method of fuzzy systems with the learning
capabilities of neural networks and evolutionary
algorithms [18].

In this study, we develop a hybrid modeling
architecture, called genetically optimized Hybrid
Fuzzy Neural Networks (gHFNN). In a nutshell, a
gHFNN is composed of two main substructures driven
by genetic optimization, namely a rule-based Fuzzy
Neural Network (FNN) and a Polynomial Neural
Network (PNN). From a standpoint of rule-based
architectures (with their rules assuming the general
form “if antecedent then consequent”), one can regard
the FNN as an implementation of the antecedent (or
premise) part of the rules while the consequent part is
realized with the aid of PNN. The resulting gHFNN is
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an optimized architecture designed by combining the
conventional Hybrid Fuzzy Neural Networks (HFNN
[17,27,28]) with genetic algorithms (GAs). In this
study, the FNNs come with two kinds of network
architectures, namely fuzzy-set based FNN and fuzzy-
relation based FNN. The topology of the network
proposed here relies on fuzzy partitions realized in
terms of fuzzy sets or fuzzy relations that its input
variables are considered separately or simultaneously.
Moreover the PNN structure is optimized by GAs,
that is, a genetically optimized PNN (gPNN) is
designed and the gPNN is applied to the consequence
part of gHFNN. The gPNN that exhibits a flexible and
versatile structure is constructed on a basis of PNN
[12,13] and Gas [7-9]. In this network, the number of
layers and number of nodes in each layer are not
predetermined (unlike in case of most neural-
networks) but can be generated in a dynamic fashion.
The design procedure applied in the construction of
each layer of the PNN deals with its structural
optimization involving the selection of optimal nodes
(or PNs) with specific local characteristics (such as
the number of input variables, the order of the
polynomial, and a collection of the specific subset of
input variables) and addresses specific aspects of
parametric optimization.

The study is organized in the following manner.
First, Section 2 delivers a brief introduction to the
architecture of the conventional HFNN. In Section 3,
we discuss a structure of the genetically optimized
HFNN (gHFNN) and elaborate on the development of
the networks. The detailed genetic design of the
gHFNN model comes with an overall description of a
detailed design methodology of the gHFNN presented
in Section 4. In Section 5, we report on a
comprehensive set of experiments. Finally concluding
remarks are covered in Section 6.

2. THE ARCHITECTURE OF
CONVENTIONAL HYBRID FUZZY NEURAL
NETWORKS (HFNN)

The conventional HFNN architecture combined with
the FNN and PNN is visualized in Fig. 1 [17,27,28].
Let us recall that the linear fuzzy inference (both fuzzy
set and fuzzy relation) -based FNN is constructed
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Fig. 1. Overall diagram for generating the convention-
al HFNN architecture.
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with the aid of the space partitioning realized by not
only fuzzy set defined for each input variable but also
fuzzy relations that effectively capture an ensemble of
input variables. These networks arise as a synergy
between two other general constructs such as FNN
and PNN. Based on the different PNN topologies, the
HFNN embraces two kinds of architectures, namely a
basic and modified one. Moreover for each
architecture of the HFNN, we identified two cases;
refer to Fig. 1 for the overall taxonomy.

3. THE ARCHITECTURE AND
DEVELOPMENT OF GENETICALLY
OPTIMIZED HFNN (GHFNN)

In this section, we elaborate on the architecture and
a development process of the gHFNN. This network
emerges from the genetically optimized multi-layer
perceptron architecture based on fuzzy set or fuzzy
relation-based FNN, PNN and GAs. In the sequel,
gHFNN is designed by combining the conventional
Hybrid Fuzzy Neural Networks (HFNN) with GAs.
These networks result as a synergy between two other
general constructs such as FNN [21,25] and PNN
[12,13].

First, we briefly discuss these two classes of models
by underlining their profound features in Sections 3.1
and 3.2, respectively.

Layer2 [ ayer 3Layer ‘

Layer 1 ¢ l Layer 5

.w? iTHEN
Fig. 2. Topology of FS_FNN by using space partition-
ing in terms of individual input variables.

Fig. 3. Topology of FR_FNN by using space partition-
ing in terms of an ensemble of input variables.
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3.1. Fuzzy neural networks based on genetic optimiza-
tion

We consider two kinds of FNNs (viz. FS FNN and
FR_FNN) based on linear fuzzy inference. The FNN
is designed by using space partitioning realized in
terms of the individual input variables or an ensemble
of all variables. Its each topology is concerned with a
granulation carried out in terms of fuzzy sets defined
in each input variable or fuzzy relations that capture
an ensemble of input variables respectively. The fuzzy
partitions formed for each case lead us to the
topologies visualized in Figs. 2-3.

The notation in these figures requires some
clarification. The “circles” denote units of the FNN
while “N” identifies a normalization procedure
applied to the membership grades of the input variable
x;. The output fi(x;) of the “>” neuron is described by
some nonlinear function f;. Not necessarily f; is a
sigmoid function encountered in conventional neural
networks but we allow for more flexibility in this
regard. Finally, in case of FS_FNN, the output of the

FNN p is governed by the following expression;

P2 A+ A o f) = XA (1)

with m being the number of the input variables (viz.
the number of the outputs f;’s of the “X” neurons in the
network). As previously mentioned, FS _FNN is
affected by the introduced fuzzy partition of each

input variable. In this sense, we can regard each f;
given by fuzzy rules as shown in Table 1. Table 1
represents the comparison of fuzzy rules, inference
result and learning for two types of FNNs. In Table 1,

R’ s the j-th fuzzy rule while Aij denotes a fuzzy

variable of the premise of the corresponding fuzzy
rule and represents membership function gz, . Ws;s

a constant consequence and W is an input variable

consequence of the rules. They express a connection
(weight) existing between the neurons as we have
already visualized in Fig. 2. Mapping from x; to fi(x;)
is determined by the fuzzy inferences and a standard
defuzzification. The inference result for individual
fuzzy rules follows a standard center of gravity
aggregation. An input signal x; activates only two
membership functions, so inference results can be
written as outlined in Table 1[20,21]. The learning of
FNN is realized by adjusting connections of the
neurons and as such it follows a standard Back-
Propagation (BP) algorithm [20,21]. The complete
update formulas are covered in Table 1. Where 77 is
a positive learning rate and ¢ is a positive
momentum coefficient. The case of FR_FNN is
carried out in the same manner as that of FS_FNN.
The task of optimizing any model involves two
main phases. First, a class of some optimization
algorithms has to be chosen so that it meets the
requirements implied by the problem at hand.

Table 1. Comparison of fuzzy set with fuzzy relation-based FNNG.

Structure FS FNN FR FNN
R:Af x is 4 then G, =ws, +w, %, | R:fxis A -adx is 4, ten Gy =w, +, x4, %
Fumzyrules | R xis 4 then Gy =vs, +w,-x, | R:lfxis 4 —andx,is 4 tenGy =w, +, %+ x,
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f)=—— "
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Learning . Ay —
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Secondly, various parameters of the optimization
algorithm need to be tuned in order to achieve its best
performance. Along this line, genetic algorithms
(GAs) viewed as optimization techniques based on the
principles of natural evolution are worth considering.
GAs have been experimentally demonstrated to
provide robust search capabilities in problems
involving complex spaces thus offering a wvalid
solution to problems requiring efficient searching. It is
instructive to highlight the main features that tell GA
apart from some other optimization methods: (1) GA
operates on the codes of the variables, but not the
variables themselves. (2) GA searches optimal points
starting from a group (population) of points in the
search space (potential solutions), rather than a single
point. (3) GA’s search is directed only by some fitness
function whose form could be quite complex; we do
not require its differentiability [7-9].

In order to enhance the learning of the FNN, we use
GAs to adjust learning rate, momentum coefficient
and the parameters of the membership functions of the
antecedents of the rules [17,27,28].

3.2. Genetically optimized PNN (gPNN)

As underlined, the PNN algorithm is based upon
the GMDH [19] method and utilizes a class of
polynomials such as linear, quadratic, modified
quadratic, etc. to describe basic processing realized
there. By choosing the most significant input variables
and an order of the polynomial among various types
of forms available, we can obtain the best one — it
comes under a name of a partial description (PD). It is
realized by selecting nodes at each layer and
eventually generating additional layers until the best
performance has been reached. Such a methodology
leads to an optimal PNN structure [12,13].

In addressing the problems with the conventional
PNN, we introduce a new genetic design approach; in
turn we will be referring to these networks as
genetically optimized PNN (to be called “gPNN”).
When we construct PNs of each layer in the
conventional PNN, such parameters as the number of
input variables (nodes), the order of polynomial, and
input variables available within a PN are fixed
(selected) in advance by the designer. This could have
frequently contributed to the difficulties in the design
of the optimal network. To overcome this apparent
drawback, we resort ourselves to the genetic
optimization, see Fig. 5 of the next section for more
detailed flow of the development activities. The
overall genetically-driven structural optimization
process of PNN is shown in Fig. 4. The determination
of the optimal values of the parameters available
within an individual PN (viz. the number of input
variables, the order of the polynomial, and input
variables) leads to a structurally and parametrically
optimized network. As a result, this network is more
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Fig. 4. Overall genetically-driven structural optimiza-
tion process of PNN.

flexible as well as it exhibits simpler topology in
comparison to the conventional PNN discussed in the
previous research [12,13].

For the optimization of the PNN model, GAs uses
the serial method of binary type, roulette-wheel used
in the selection process, one-point crossover in the
crossover operation, and a binary inversion
(complementation) operation in the mutation operator.
To retain the best individual and carry it over to the
next generation, we use elitist strategy [7,8].

3.3. Optimization of gHFNN topologies

The topology of gHFNN is constructed by
combining fuzzy set(or fuzzy relation)-based FNN for
the premise part of the gHFNN with PNN being used
as the consequence part of gHFNN. These networks
emerge through a synergy between two other general
constructs such as FNNs and gPNNs. In what follows,
the gHFNN is composed of two main substructures
driven by genetic optimization; see Fig. 5. The role of
FNN s arising at the premise part is to support learning
and interact with input as well as granulate the
corresponding input space (viz. converting the
numeric data into their granular representatives
emerging at the level of fuzzy sets). Especially, two
kinds of linear fuzzy inference-based FNN realized
with the fuzzy partitioning of individual input
variables or an ensemble of input variable are
considered to enhance the adaptability of the hybrid
network architecture. One should stress that the
structure of the consequent gPNN is not fixed in
advance but becomes dynamically organized during a
growth process. In essence, the gPNN exhibits an
ability of self-organization. The gPNN algorithm can
produce an optimal nonlinear system by selecting
significant input variables among dozens of those
available at the input and forming various types of
polynomials. Therefore, for the very reason we
selected FNN and gPNN in order to design the
gHFNN architecture.

One may consider some other hybrid network
architectures such as a combination of FNNs and
MLPs as well as ANFIS-like models combined with
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Fig. 5. Overall diagram for generation of gHFNN
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MLPs. While attractive on a surface, such
hybridization may lead to several potential problems:
1) The repeated learning and optimization of each of
the contributing structure (such as ANFIS and MLP)
may result in excessive learning time as well as
generate quite complex networks for relatively simple
systems and 2) owing to its fixed structure, it could be
difficult to generate the flexible topologies of the
networks that are required to deal with highly
nonlinear dependencies.

4. THE ALGORITHMS AND DESIGN
PROCEDURE OF GENETICALLY
OPTIMIZED HFNN (GHFNN)

In this section, we elaborate on the algorithmic
details of the design method by considering the
functionality of the individual layers in the network
architectures. The design procedure for each layer in
the premise and consequence of gHFNN comprises of
the following steps:

4.1. The premise of gHFNN: in case of FS_FNN

Layer 1: Input layer: The role of this layer is to
distribute the signals to the nodes in the next layer.

Layer 2: Computing activation degrees of linguistic
labels: Each node in this layer corresponds to one
linguistic label (small, large, etc.) of the input
variables in layer 1. The layer determines a degree of
satisfaction (activation) of this label by the input.

Layer 3: Normalization of a degree activation
(firing) of the rule: As described, a degree of
activation of each rule was calculated in layer 2. In
this layer, we normalize the activation level by using
the following expression.
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where n is the number of membership function for
each input variable. An input signal x; activates only
two membership functions simultaneously and the
sum of grades of these two neighboring membership

functions labeled by k and £+1 is always equal to 1,
that is g (%) + g4, (x;) =1, so that this leads to a
simpler format as shown in (2) {20,21].

Layer 4: Multiplying a normalized activation
degree of the rule by comnection (weight): The
calculated activation degree at the third layer is now
calibrated through the connections, that is

a; = 11; x Cy; = p, x Cy,; (Here, Cy, = ws,; +w; -x,) (3)

If we choose CP (connection point) 1(viz. point
between layer 4 and layer 5) for combining FS FNN
with PNN as shown in Fig. 2, a; is given as the input
variable of the PNN. If we choose CP 2(viz. point
between layer 5 and layer 6), fi(x;) corresponds to the
input signal to the output layer of FNN viewed as the
input variable of the PNN.

Layer 5: Fuzzy inference for output of the rules:
Considering Fig. 2, the output of each node in the 5th
layer of the premise part of gHFNN is inferred by the
center of gravity method [20,21]. If we choose CP 2, f;
is the input variable of gPNN that is the consequence
part of gHFNN

zZ z

@; Zﬂij(xi)~(wsl-j + xl-wij)
j=1 j=1
Si)=— =

Z My (X;)
j=1

= g (x;) - (wsyy + 2wy )

+ fig () - (WSipeqg + X Wigeq).

Z w5 (;) @)
j=1

[Output layer of FNN]| Computing output of basic
FNN: The output becomes a sum of the individual
contributions from the previous layer, see (1)

The design procedure for each layer in FR_FNN is
carried out in a same manner as the one presented for
FS FNN.

4.2. The consequence of gHFNN: in case of gPNN
combined with FS FNN

Step 1: Configuration of input variables: Define
input variables x;’s (i=1, 2, ..., n) to gPNN of the
consequent structure of gHFNN. If we choose the first
option to combine the structures of FNN and gPNN
(CP 1), a;, which is the output of layer 4 in the
premise structure of the gHFNN, is treated as the
input of the consequence structure of gHFNN, that is,
xi=ay, Xx;=ap,” , X7~a; (n=ix j). For the second
option of combining the structures (viz. CP 2), we
have x,=f1, xo=," , Xy=f (n=m).

Step 2: Decision of initial information for
constructing the gPNN structure: We decide upon the
design parameters of the PNN structure and they
include that a) Stopping criterion, b) Maximum
number of input variables coming to each node in the
corresponding layer, ¢) Total number W of nodes to be
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retained (selected) at the next generation of the gPNN,
d) Depth of the gPNN to be selected to reduce a
conflict between overfitting and generalization
abilities of the developed gPNN, and e) Depth and
width of the gPNN to be selected as a result of a
tradeoff between accuracy and complexity of the
overall model. It is worth stressing that the decisions
made with respect to (b)-(¢) help us avoid building
excessively large networks (which could be quite
limited in terms of their predictive abilities).

Step 3: Initialization of population: We create a
population of chromosomes for a PN, where each
chromosome is a binary vector of bits. All bits for
each chromosome are initialized randomly.

Step 4: Decision of PN structure using genetic
design: This concerns the selection of the number of
input variables, the polynomial order, and the input
variables to be assigned in each node of the
corresponding layer. These important decisions are
carried out through an extensive genetic optimization.
When it comes to the organization of the chromosome
representing a PN, we divide the chromosome into
three sub-chromosomes as shown in Fig. 7. The 1
sub-chromosome contains the number of input
variables, the 2" sub-chromosome involves the order
of the polynomial of the node, and the 3™ sub-chromo-

n™ Polynomial Neuron(PN)
b/

2 ¥ ‘¥ Polynomial order(Type T)
No. of inputs

Fig. 6. Formation of each PN in PNN architecture.
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Fig. 7. The PN design used in the gPNN architecture —
structural considerations and mapping the
structure on a chromosome.

some (remaining bits) contains input variables coming
to the corresponding node (PN). In nodes (PNs) of
each layer of gPNN, we adhere to the notation of Fig.
6. ‘PN,” denotes the " PN (node) of the
corresponding layer, ‘N’ denotes the number of nodes
(inputs or PNs) coming to the corresponding node,
and ‘T’ denotes the polynomial order in the
corresponding node.

Each sub-step of the genetic design of the three
types of the parameters available within the PN is
structured as follows.

Step 4-1: Selection of the number of input variables
(1st sub-chromosome)

Sub-step 1) The first 3 bits of the given

chromosome are assigned to the binary bits for the

selection of the number of input variables.

Sub-step 2) The selected 3 bits are decoded into a

decimal.

Sub-step 3) The above decimal value is converted

into {1 N] and rounded off. N denotes the maximal

number of input variables entering the
corresponding node (PN).

Sub-step 4) The normalized integer value is then

treated as the number of input variables (or input

nodes) coming to the corresponding node.

Step 4-2: Selection of the order of polynomial (2nd
sub-chromosome)

Sub-step 1) The 3 bits of the 2nd sub-chromosome

are assigned to the binary bits for the selection of

the order of polynomial.

Sub-step 2) The 3 bits are decoded into a decimal

format.

Sub-step 3) The decimal value obtained is

normalized into [1 3] and rounded off.

Sub-step 4) The normalized integer value is given

as the polynomial order.

Step 4-3: Selection of input variables (3rd sub-
chromosome)

Sub-step 1) The remaining bits are assigned to the

binary bits for the selection of input variables.

Sub-step 2) The remaining bits are divided by the

value obtained in step 4-1.

Sub-step 3) Each bit structure is decoded into a

decimal.

Sub-step 4) The decimal value obtained is

normalized into [1 # (or #)] and rounded off. » is

the overall system’s inputs in the 1¥ layer, and W is
the number of the selected nodes in the 2™ layer or
higher. _

Sub-step 5) The normalized integer values are then

taken as the selected input variables while

constructing each node of the corresponding layer.

Here, if the selected input variables are multiple -

duplicated, the multiple-duplicated input variables

are treated as a single input variable.

Step 5: Estimation of the coefficients of the polyno-
mial assigned to the selected node and evaluation
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Table 2. Different forms of regression polynomial

forming a PN.
mber of inputs -
i Jrder o 2 3 4
ithe polynonia )
1 (Type 1) Bilinear Trilinear Tetralinear
2 (Type 2) Biquadratic-1 | Triquadratic-1| Tetraquadratic-1
2 (Type 3) Biquadratic-2 | Triquadratic-2 | Tetraquadratic-2

The following types of the polynomials are used;
e Bilinear =c, +¢x, + ¢yx, ,
e Biquadratic-1 (Basic)=Bilinear+ ¢;xf + c,x3 +¢sx,x, ,
¢ Biquadratic-2 (Modified)= Bilinear +c;x,x,

of a PN: The vector of coefficients is derived by
minimizing the mean squared error between y; and
¥ [12,13]. To evaluate the approximation and
generalization capability of a PN produced by each
chromosome, we use the following fitness function
(the objective function is given in Section 5).

1
ithess function = 5
% 3 1+ Objective function ©®)

Step 6: Elitist strategy and Selection of nodes
(PNs) with the best predictive capability: The nodes
(PNs) obtained on the basis of the calculated fitness
values (Fy, F», = , F,) are rearranged in a descending
order. We unify the nodes with duplicated fitness
values (viz. in case that one node is the same fitness
value as other nodes) among the rearranged nodes on
the basis of the fitness values. We choose several PNs
(W) characterized by the best fitness values. For the
elitist strategy, we select the node that has the highest
fitness value among the generated nodes.

Step 7: Reproduction: To generate new populations
of the next generation, we carry out selection,
crossover, and mutation operation using genetic
information and the fitness values.

Until the last generation, this step carries out by
repeating steps 4-7.

Step 8: Construction of a corresponding layer of
consequence part of gHFNN: Individuals evolved by
GAs produce optimal PNs, . The generated PNs
construct their corresponding layer for the design of
consequence part of gHFNN.

Step 9: Check the termination criterion: The
termination condition builds a sound compromise
between the high accuracy of the resulting model and
its complexity as well as generalization abilities.

Step 10: Determine new input variables for the
next layer: If the termination criterion has not been
met, the model is expanded. The outputs of the
preserved nodes (z, zz, ..., zw) serves as new inputs (o
the next layer (x;, x2, ..., xw). Repeating steps 3-10
carries out the gPNN.

S. EXPERIMENTAL STUDIES

In this section, the performance of the gHFNN is
illustrated with the aid of well-known and widely used
gas furnace dataset (Box-Jenkins dataset)[1-5,22-28].
The performance index (object function) was used as
Mean Squared Error (MSE) :

E(PI or EPI) :%Z(yp -3, (6)
p=l

Genetic algorithms use binary type, roulette-wheel
as the selection operator, one-point crossover, and an
invert operation in the mutation operator. The
crossover rate of GAs is set to 0.75 and probability of
mutation is equal to 0.065. The values of these
parameters come from experiments and are very much
in line with typical values encountered in genetic
optimization.

We illustrate the performance of the network and
elaborate on its development by experimenting with
data coming from the gas furnace process. The time
series data (296 input-output pairs) resulting from the
gas furnace process has been intensively studied in the
previous literature [1-5,23-28]. The delayed terms of
methane gas flow rate, u(¢) and carbon dioxide density,
y(¢) are used as system input variables such as u(z-3),
w(t-2), u(t-1), y(£-3), y(t-2), and y(¢-1). We use two
types of system input variables of FNN structure,
Type 1 and Type II to design an optimal model from
gas furnace data. Type I utilize two system input
variables such as u(¢-3) and y(s-1) and Type II utilizes
3 system input variables such as u(#-2), y(¢-2), and y(t-
1). The output variable is (7).

Table 3 summarizes the computational aspects
related to the genetic optimization of gHFNN. Design
information for the optimization of gHFNN
distinguishes between information of two networks
such as the premise FNN and the consequent gPNN.
First, a chromosome used in genetic optimization of
the premise FNN contains the vertices of 2
membership functions of each system input (here, 2
(Type 1) or 3 (Type II) system input variables have
been used), learning rate, and momentum coefficient.
The numbers of bits allocated to a chromosome are
equal to 40(Type D)/60(Type 1), 10, and 10,
respectively, that is 10 bits is assigned to each one
variable. The parameters such as learning rate,
momentum coefficient, and membership parameters
are tuned with the help of genetic optimization of the
FNN as shown in Table 3. Next, in case of the
consequent gPNN, a chromosome used in the genetic
optimization consists of a string including 3 sub-
chromosomes. The numbers of bits allocated to each
sub-chromosome are equal to 3, 3, and 24,
respectively. The population size being selected from
the total population size, 60 are equal to 30. The
process is realized as follows. 60 nodes (PNs) are
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generated in each layer of the network. The
parameters of all nodes generated in each layer are
estimated and the network is evaluated using both the
training and testing data sets. Then we compare these
values and choose 30 PNs that produce the best
(lowest) value of the performance index. The number
of inputs to be selected is confined to a maximum of
four entries. The order of the polynomial is chosen
from three types, that is Type 1, Type 2, and Type 3.
Table 4 includes the results of the overall network
reported according to various alternatives concerning
various forms of FNN architecture, format of entire
system inputs and location of the connection point.
When considering the FS_FNN with Type 1 (4 fuzzy
rules), the minimal value of the performance index,
that is PI= 0.041 and EPI=0.267 are obtained. In case
of the FS FNN with Type II (6 fuzzy rules), the best
results are reported with the performance index such
that P1=0.0256 and EP1=0.143. When using FR_FNN,

Next the values of the performance index of output
of the gHFNN depend on each connection point based
on two forms such as FS FNN and FR_FNN. The
values of the performance index vis-a-vis choice of
number of layers of gHFNN related to the optimized
architectures in each layer of the network are shown
in Table 4. That is, according to the maximal number
of inputs to be selected (Max=4), the selected node
numbers, the selected polynomial type (Type T), and
its corresponding performance index (PI and EPI)
were shown when the genetic optimization for each
layer was carried out. For example, in case when
considering connection point 2 of FS_FNN with Type
Il in Table 4, let us investigate the 3™ layer of the
network (shadowed in Table 4). The fitness value in
layer 3 attains its maximum for Max=4 when nodes
19, 30 (such as z,9, z3p) occur among preferred nodes

Table 4. Performance index of HFNN for the gas

the best results (PI= 0.025 and EPI=0.265) were furnace.
obtained for Type I(4 fuzzy rules) and Type II(8 fuzzy (a) In case of using FS FNN.
rules), respectively (in the second case we have PI= Premise part Consequence part
f C
.033 and EPI=0.119). Fuzzy | No.of P |EPI
0.03 0.119) inferen| rules | PI [ EPI P JLayes iﬁofti Input No. [T
ce | (MFs) P
Table 3. Computational aspects of the optimization of 1 1 4 [4]2[1]33]l0.019]0.202
gHFNN. 2 | 4 {7[12[2]10]2]f0.018]0.271
. 1
(a) In case Ofusmg FS FNN. 0 3 4 J20{21] 5] 3 |2[}0.017 }0.267,
Generation 150 4 3 |22113)29] - |2} 0.016]0.263
Population size 60 Linear (212) 0.041 10,267 ? d_olisziiols 0'0; 0.258
GAs Elite population size(W) 30 2 [1]2 * [3]10-02710.310
Strin Premise structure (FNN)  {10(per one variable) 2 3 [41645] 120.02110.279
| tﬁ Y 021 3 4 |6[14]7]1]2)0.018]0.270
cng Consequence structure (PNN) 3+3+24 Pl 3 szl RlooisTozes
No. of entire system inputs 2/3 5 3 |16l6 14l - [2l0.016 [0.259
Learning iteration 300 1 4 311 (5 [3ll0.0218]0.136
Premise Learning rate tuned 0.0052- 2 4 |6 24]16{30l310.0197]0.124
(FNN) Momentum oIl 3 [ 3 [4]ief26[ [i]jo.01960 121
. 0.0004
Coefficient tuned 4 4 [22]24] 1 ]13]10.0193]|0.119
HFNN No. of rul 4/6 .
8 0. of rules — e Linear (2+g+2) 0.0256l0.143 5 3 |1)18f21f- |3[f0.0191]0.117
[No. of entire inputs| P2 >3 ! 3 |1]2¢3] 13[0.02320.130
Consequence _ 2 4 J12[15]13] 6 |2{j0.0196{0.120
(aPNN) Maximal layer 5 02] 3 1 2 [19]0] |- [2Jlo.0194f0.115
No. of inputs to be selected(N)}} 1 <N < 4(Max) 4 4 [2]21]11f5[1{0.0188]0.113
Type(T) 1<T<3 5 | 4 [13]326]25[1]o-0184[0.110
N, T : integer
(b) In case of using FR_ FNN. (b) In case of using FR_FNN.
Generation 150 Premise part Consequence part ot | Bt
Population size 60 Luzzy [No of WIS py | gpi JLayed ™ ©X taput No. |1
GAs Elite population size(W) 30 Inferencel  QMFs) Inputs
String length Premise structure (FNN)  |1O(per one variable) 1 4 [4[1]3]2]2f0019/0.267
Consequence structure (PNN) 3+3+24 2 4 | 7]1{13[22}3]]0.026]0.251
No. of entire system inputs 2/3 Linear (212) 0.025|0.265) 3 2 |1bs - 13/l0:625)0.244
Learning iteration 500 4 2 176 Nsll0.025l0.243
Premise Learning rate tuned 0.0144 - -
(FR_FNN) Momentam 0.00064 5 3 [2922[17] - |3fl0.016[0.249
eHFNN Coefficient tuned ' 1| 4 |6[s]|2[s8]1]]o.0830.146
No. of rules 4/8 b Slo02slo.11
No. of entire inputs 4/8 8 2 1181619 028)0.116
Consequence Maximal layer 5 Linear (2x2x2) 0-03310.119 3 | 4 [4]24)5]6]2)10.022/0.119)
(8PNN)  [No. of inputs to be selected(N)] 1 < N < 4(Max) 4 | 3 128/4]5] - |2ffo.021]0.106
Type(T) 1sT<3 5 | 3 afisls| - |11fo.0210.104
N, T : integer
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(W) chosen in the previous layer (the 2" layer) are
selected as the node inputs in the present layer.
Furthermore 2 inputs of Type 2 (linear function) were
selected as the results of the genetic optimization,
refer to Fig. 8(b). In the “Input No.” item of Table 4, a
blank node marked by period ( - ) indicates that it has
not been selected by the genetic operation. The best
results for the proposed network related to the output
node mentioned previously were reported as
PI=0.0194 and EPI=0.115 for layer 3 (see Fig. 8(b)),
and PI=0.0184 and EPI=0.110 for layer 5. In the
sequel, the depth (the number of layers) and the width
(the number of nodes) as well as the number of entire
nodes (inputs) of the proposed genetically optimized
HEFNN (gHFNN) can be lower in comparison to the
“conventional HFNN” (which immensely contributes
to the compactness of the resulting network). In what
follows, the genetic design procedure at stage (layer)
of HFNN leads to the selection of the preferred nodes
(or PNs) with optimal local characteristics (such as the
number of input variables, the order of the polynomial,
and input variables). In addition, when considering
FR_FNN with Type II (8 fuzzy rules), the best results
are reported in the form of the performance index
such as PI=0.022 and EP1=0.110 for layer 3, and
PI[=0.021 and EPI=0.104 for layer 5. The optimal
topology for layer 3 is shown in Fig. 9(b).

Tables 5-6 present the performance index of the
corresponding node in three layers of genetically
optimized PNN (gPNN) dynamically generated as the
consequent part of HFPNN shown in Figs. 8-9.

(a) In case of Type I. (b) In case of Type II.
Fig. 8. Genetically optimized HFNN (gHFNN) with
FS_FNN.

(a) In case of Type L.

(b) In case of Type II.

Fig. 9. Genetically optimized HFNN (gHFNN) with
FR_FNN.

Sblager
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(a) FS_FNN with Type [.  (b) FS_FNN with Type II.

Fig. 10. Optimization procedure of FS FNN based
HFNN by BP learning and GAs.
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Fig. 11. Optimization procedure of FR FNN based
HFNN by BP learning and GAs.

Table 5. Performance Index of the corresponding node
in three layers of genetically optimized PNN
combined with FS FNN.

(a) In case of using Type I.
1* Layer 2" Layer 3 Layer

No] Pl | EPINo] PI |EPI|No] PI |EPI
1 0.022892/0.34449)
2 10.019152[0.29844
4 10.019435(0.29263
5 |0:02283 10.341924 5 g 187120 27678
1310.03281300.31034] § "o Coodl s )
16 0.023313(0.32909] . |- ‘ 290.017446/0.26704
0.018295(0.27655
1810.51323]0-5968 15, g 019051/0.27617

21(0.022597(0.34189| < |- :
23 0.022151[0.34656,
24 (0.028435/0.30079
29 10.023127}0.33766,

£ B
RREww

(b) In case of using Type I1.
1* Layer 2™ Layer 3" Layer
No[ Pl [EPI|[No] Pl [EPI|NoJ] PI | EFPI
0.095813(0.38431
0.10422 [0.21227

3
4
g 0.021857)0.1429 | 115 1197450, 12828
1

0.42585|1.3038 6 (0.019431|0.1155
5.09136710.40557 30(0.019618/0.12456]
15(0.40244 | 1.346

171 4.0107 | 5.9559

When using FS_FNN, Fig. 8 illustrates the detailed
optimal topology of the gHFNN with 3 layers of
PNN; the networks come with the following values:
P1=0.017, EPI=0.267 for Type 1(4 fuzzy rules), and
P1=0.194, EPI= 0.115 for Type 1I(6 fuzzy rules). In
case of using FR_FNN, Fig. 9 depicts the detailed
optimal topologies of the gHFNN with 3 layers of
PNN, the minimal values of the performance index,
that is PI=0.025, EP1=0.244 for Type I, and P1=0.022,
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Table 6. Performance Index of the corresponding node
in three layers of genetically optimized PNN
combined with FR_FNN.

(a) In case of using Type L.

1* Layer 2™ Layer 3" Layer

No|] PI [EPI No] PI [EPI|NoJ] PI |EPI

105143 [1.5179

7 0.39659 10.97722
8 |0.50153| 12104 218 8'8?22‘1‘2%225417668 6 10.025519(0.24411
13| 0.5445 [1.2858(80- :

221 2.7686 [5.1946

(b) In case of using Type II.

1* Layer 2™ Layer 3" Layer

No| PI [EPI[NoJ] PIL [EPINo] Pl [EPI
4 10.083797)0.17231
5 [0.21702 [0.30624
6 |0.22268 [0.30464
13]0.25589 10.30755
1710.43082 [0.58043
180.08356 {0.14672
21{0.16308 0.14419
2310.15087 0.13321
300.43268 10.55159

4 10.031007/0.11729,
5 [0.0293590.11921
6 10.026414{0.11954]
2410.030291{0.1171

5 10.022604/0.11023

Table 7. Performance analysis of selected models.

Model PI | EPI No. of rules
Kim, et al.'s model [23] 0.034{0.244 2
Lin and Cunningham's mode [24] {0.071{0.261 4
.022/0. X
Sl s
Min-Max [4] - - (3X2)
. 0.024]0.358| 4(2X2)
Linear
0.020j0.362 6(3%X2)
— ‘ . >
GAs [4] Slm.phﬁed 0.023]0.344 4(2X2)
Linear  ]0.018]0.264 4(2X2)
impli X . X
Complex [1] Slm'phﬁed 0.024]0.328 4(2%2)
Fuzz Linear  |0.023]0.306! 4(2X2)
’[ Hybrid (3] | Simplified [0.024)0.329) 4(2x2)
(GAs+Complex)|  Linear [0.017[0.289 4(2X2)
impli X
HCM [2] Sl@pllﬁed 0.755]1.439, 6(3X2)
Linear  0.018]0.286! 6(3x2)
X
HCM+GAs [2] o (3>2)
. 0.02640.272 4(2X2)
Linear
0.020]0.264] 6(3X2)
Neural Networks [2] 0.03414.997
. . X
-+ Oh's Adaptive FNN [5] 0.02110.332 23%3)
0.022[0.353 4(2X2)
Simplified 0.043]0.264] 6(3+3)
25
FNN125) Linear 0.037]0.273 6(3+3)
. Simplified 0.025[0.274] 6(3+3)
Iti-F 1
Multi-FNN [26] Linear 0.024]0.283 6(313)
th
Generic (FS_FNN) 0.023]0.277| 4 rules/5 le:‘yer(NA)
[27,28] 0.02000.119 6 rules/5" layer
SOFPNN ) ) (22 nodes)
th
|Advanced (FS_FNN) 0.019]0.264( 4 rules]/S lle}l‘yer(NA)
[28] 6 rules/5" layer
0.017[0.113 (26 nodes)
e
4 rules/3™ layer
gHENN  [POUTI0267) g odes)
FS F d
(FS_FNN) o.010l0.115 61’(11118513d!ayer
Proposed model - E)mes)
0.025l0.244 4 rules/3™ layer
gHFNN i ’ ) {8 nodes)
(FR_FNN) l 7 rules/3" layer
0.022]0.110 (14 nodes)

NA: Not Available, layer (® ). the number of entire nodes of the
corresponding networks

EPI=0.110 for Type II are obtained. The proposed
network enables the architecture to be a structurally
optimized and gets simpler than the conventional
HFNN. Figs. 10-11 illustrate the optimization process
by visualizing the performance index in successive
cycles of both BP learning and genetic optimization
when using linear fuzzy inference-based FS_FNN or
FR_FNN, refer to Tables 4-6 and Figs. 8-9. Table 7
contrasts the performance of the genetically developed
network with other fuzzy and fuzzy-neural networks
reported in the literature. It becomes obvious that the
proposed genetically optimized HFNN architectures
outperform other models both in terms of their
accuracy and generalization capabilities.

6. CONCLUDING REMARKS

In this study, we have introduced a class of gHFNN
driven genetic optimization regarded as a modeling
vehicle for nonlinear and complex systems. The
genetically optimized HFNNs are constructed by
combining FNNs with gPNNs. The proposed model
comes with two kinds of rule-based FNNs (viz.
FS_FNN and FR_FNN based on linear fuzzy
inferences) as well as a diversity of local
characteristics of PNs that are extremely useful when
coping with various nonlinear characteristics of the
system under consideration. In what follows, in
contrast to the conventional HFNN structures and
their learning, the depth (the number of layers) and the
width (the number of nodes) as well as the number of
entire nodes (inputs) of the proposed genetically
optimized HFNN (gHFNN) can be lower.

The comprehensive design methodology comes
with the parametrically as well as structurally
optimized network architecture. A few general notes
are worth stressing: 1) as the premise structure of the
gHFNN, the optimization of the rule-based FNN
hinges on genetic algorithms and back-propagation
(BP) learning algorithm: The GAs leads to the auto-
tuning of vertexes of membership function, while the
BP algorithm helps produce optimal parameters of the
consequent polynomial of fuzzy rules through
learning; 2) the gPNN that is the consequent structure
of the gHFNN is based on the technologies of the
extended GMDH algorithm and GAs: The extended
GMDH method is comprised of both a structural
phase such as a self-organizing and evolutionary
algorithm and a parametric phase driven by the least
square error (LSE)-based learning. Furthermore the
PNN architecture is optimized by the genetic
optimization that leads to the selection of the optimal
nodes (or PNs) with local characteristics such as the
number of input variables, the order of the polynomial,
and a collection of the specific subset of input
variables. In this sense, we have constructed a
coherent development platform in which all
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components of CI are fully utilized. In the sequel, a
variety of architectures of the proposed gHFNN
driven to genetic optimization have been discussed.
The model is inherently dynamic - the use of the
genetically optimized PNN (gPNN) of consequent
structure of the overall network is essential to the
generation process of the “optimally self-organizing”
network by selecting its width and depth. The series of
experiments helped compare the network with other
models through which we found the network to be of
superior quality.
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