• Title/Summary/Keyword: inference Control

Search Result 662, Processing Time 0.025 seconds

Fuzzy Inferdence-based Reinforcement Learning for Recurrent Neural Network (퍼지 추론에 의한 리커런트 뉴럴 네트워크 강화학습)

  • 전효병;이동욱;김대준;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.120-123
    • /
    • 1997
  • In this paper, we propose the Fuzzy Inference-based Reinforcement Learning Algorithm. We offer more similar learning scheme to the psychological learning of the higher animal's including human, by using Fuzzy Inference in Reinforcement Learning. The proposed method follows the way linguistic and conceptional expression have an effect on human's behavior by reasoning reinforcement based on fuzzy rule. The intervals of fuzzy membership functions are found optimally by genetic algorithms. And using Recurrent state is considered to make an action in dynamical environment. We show the validity of the proposed learning algorithm by applying to the inverted pendulum control problem.

  • PDF

Fuzzy Inference-based Reinforcement Learning of Dynamic Recurrent Neural Networks

  • Jun, Hyo-Byung;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.5
    • /
    • pp.60-66
    • /
    • 1997
  • This paper presents a fuzzy inference-based reinforcement learning algorithm of dynamci recurrent neural networks, which is very similar to the psychological learning method of higher animals. By useing the fuzzy inference technique the linguistic and concetional expressions have an effect on the controller's action indirectly, which is shown in human's behavior. The intervlas of fuzzy membership functions are found optimally by genetic algorithms. And using recurrent neural networks composed of dynamic neurons as action-generation networks, past state as well as current state is considered to make an action in dynamical environment. We show the validity of the proposed learning algorithm by applying it to the inverted pendulum control problem.

  • PDF

Maximum Torque Control of SynRM using AFNIS(Adaptive Fuzzy Neuro Inference) (AFNIS를 이용한 SynRM의 최대토크 제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.219-220
    • /
    • 2008
  • The paper is proposed maximum torque control of SynRM drive using adaptive fuzzy neuro inference system(AFNIS) and artificial neural network(ANN). The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. The proposed control algorithm is applied to SynRM drive system controlled AFNIS and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the AFNIS and ANN controller.

  • PDF

Variable structure control with fuzzy reaching law method for nonlinear systems (비선형 시스템에 대한 퍼지 도달 법칙을 가지는 가변 구조 제어)

  • Sa-Gong, Seong-Dae;Lee, Yeon-Jeong;Choe, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.279-286
    • /
    • 1996
  • In this paper, variable structure control(VSC) based on reaching law method with fuzzy inference for nonlinear systems is proposed. The reaching law means the reaching condition which forces an initial state of system to reach switching surface in finite time, and specifies the dynamics of a desired switching function. Since the conventional reaching law has fixed coefficients, the chattering can be existed largely in sliding mode. In the design of a proposed fuzzy reaching law, we fuzzify RP(representative point)'s orthogonal distance to switching surface and RP's distance the origin of the 2-dimensional space whose coordinates are the error and the error rate. The coefficients of the reaching law are varied appropriately by the fuzzy inference. Hence the state of system in reaching mode reaches fastly switching surface by the large values of reaching coefficients and the chattering is reduced in sliding mode by the small values of those. And the effectiveness of the proposed fuzzy reaching law method is showen by the simulation results of the control of a two link robot manipulator.

  • PDF

Fuzzy Based Control Gain Auto-Tuning of Servo Driver (퍼지를 이용한 서보드라이버의 제어 개인 자동 조정)

  • Kong, Young-Bae;Seo, Ho-Joon;Park, Gwi-Tae;Oh, Sang-Rok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.541-543
    • /
    • 1998
  • Generally, PI control is simple and easy to implement and gains of PI control are determined by specifying a dynamics of the servo driver system. However, the gain-tuning is so difficult that it is relied on an expert's effort. This paper presents a gain auto-tuning method for PI controllers based on a fuzzy inference mechanism. First, the proposed fuzzy inference system identifies a system moment of inertia and adjusts control gains by using the difference in speed responses between a real plant and a reference model. Second, this paper proposes an improved fuzzy PI controller. To reduce the speed overshoot, we adapt a control method that selects a proper PI gains with respect to the load inertia variation. To prove the validity of the proposed gain tuning algorithm and the feasibility of the servo drive, a high performance servo drive will be implemented by DSP(TMS320C31) and intelligent power module (IPM). The proposed controller is applied to the speed control of the 300W AC servo motor. Some simulations and experimental results show that the proposed fuzzy PI controller is more robust than the conventional PI controller against the load inertia variation.

  • PDF

A Study on Access Authorization Inference Modes for Information Security of Specialized Private Networks (특성화 사설 네트워크 정보보호를 위한 접근권한 추론모드에 관한 연구)

  • Seo, Woo Seok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.3
    • /
    • pp.99-106
    • /
    • 2014
  • The most significant change and trend in the information security market in the year of 2014 is in relation to the issue and incidents of personal information security, which leads the area of information security to a new phase. With the year of 2011 as the turning point, the security technology advanced based on the policies and conditions that combine personal information and information security in the same category. Such technical changes in information security involve various types of information, rapidly changing security policies in response to emerging illegal techniques, and embracing consistent changes in the network configuration accordingly. This study presents the result of standardization and quantification of external access inference by utilizing the measurements to fathom the access authorization performance in advance for information security in specialized networks designed to carry out certain tasks for a group of clients in the easiest and most simple manner. The findings will provide the realistic data available with the access authorization inference modes to control illegal access to the edge of a client network.

A Development of Fuzzy Logic-Based Evaluation Model for Traffic Accident Risk Level (퍼지 이론을 이용한 교통사고 위험수준 평가모형)

  • 변완희;최기주
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.2
    • /
    • pp.119-136
    • /
    • 1996
  • The evaluation of risk level or possibility of traffic accidents is a fundamental task in reducing the dangers associated with current transportation system. However, due to the lack of data and basic researches for identifying such factors, evaluations so far have been undertaken by only the experts who can use their judgements well in this regard. Here comes the motivation this thesis to evaluate such risk level more or less in an automatic manner. The purpose of this thesis is to test the fuzzy-logic theory in evaluating the risk level of traffic accidents. In modeling the process of expert's logical inference of risk level determination, only the geometric features have been considered for the simplicity of the modeling. They are the visibility of road surface, horizontal alignment, vertical grade, diverging point, and the location of pedestrain crossing. At the same time, among some inference methods, fuzzy composition inference method has been employed as a back-bone inference mechanism. In calibration, the proposed model used four sites' data. After that, using calibrated model, six sites' risk levels have been identified. The results of the six sites' outcomes were quite similar to those of real world other than some errors caused by the enforcement of the model's output. But it seems that this kind of errors can be overcome in the future if some other factors such as driver characteristics, traffic environment, and traffic control conditions have been considered. Futhermore, the application of site's specific time series data would produce better results.

  • PDF

A Fuzzy Agent System to Control the State Transition for an Autonomous Decision Making on Taxi Driving (택시 운행 중 상태변화에 대한 자율적 의사결정을 위한 퍼지 에이전트)

  • Lim, Chun-Kyu;Kang, Byung-Wook
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.413-420
    • /
    • 2005
  • In this paper, we apply software agents, which use fuzzy logic and make autonomous decisions according to state transitions, to car driving environment. We carry out an experiment on artificial intelligent car driving in terms of real-time reactive agents. Inference techniques for constructing real-time reactive agents consider the settings with max-product inference, n-fuzzy rules, and n-associatives ($A_l,\;B_l),\;{\ldots}(A_n,\;B_n$). Then we perform defuzzification processes, extract a central value, and work out inference processes.

Application of Inference Models for Estimating Parameters of a Catchment Modelling System (추론모델을 통한 강우-유출모형 매개변수의 간접추정법 적용)

  • Choi, Kyung-Sook
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.587-596
    • /
    • 2003
  • Application of a catchment modelling system requires recorded information to ascertain the reliability and robustness of the predicted flow conditions. Where this recorded information is not available, the necessary information for reliable and robust predictions must be obtained from other available information sources. The alternative approach presented in this paper used inference models for getting this necessary information that is required to calibrate and validate the catchment modelling system for both an ungauged and a gauged catchments. In this study, inference models were developed for determination of control parameters of the Storm Water Management Model (SWMM), mainly based on landuse component of the catchment, which is a major factor to impact on quantity and quality of catchment runoff. Results from the study show that the new approach for determination of the spatially variable control parameters produced more accurate estimates than a traditional approach. Also, the number of control parameters estimated can be reduced significantly as the proposed method only requires determination of control parameters associated with each land use of the catchment while a traditional approach needs to assign a number of control parameters for a number of subcatchment.

Development of An Expert system with Knowledge Learning Capability for Service Restoration of Automated Distribution Substation (고도화된 자동화 변전소의 사고복구 지원을 위한 지식학습능력을 가지는 전문가 시스템의 개발)

  • Ko Yun-Seok;Kang Tae-Gue
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.12
    • /
    • pp.637-644
    • /
    • 2004
  • This paper proposes an expert system with the knowledge learning capability which can enhance the safety and effectiveness of substation operation in the automated substation as well as existing substation by inferring multiple events such as main transformer fault, busbar fault and main transformer work schedule under multiple inference mode and multiple objective mode and by considering totally the switch status and the main transformer operating constraints. Especially inference mode includes the local minimum tree search method and pattern recognition method to enhance the performance of real-time bus reconfiguration strategy. The inference engine of the expert system consists of intuitive inferencing part and logical inferencing part. The intuitive inferencing part offers the control strategy corresponding to the event which is most similar to the real event by searching based on a minimum distance classification method of pattern recognition methods. On the other hand, logical inferencing part makes real-time control strategy using real-time mode(best-first search method) when the intuitive inferencing is failed. Also, it builds up a knowledge base or appends a new knowledge to the knowledge base using pattern learning function. The expert system has main transformer fault, main transformer maintenance work and bus fault processing function. It is implemented as computer language, Visual C++ which has a dynamic programming function for implementing of inference engine and a MFC function for implementing of MMI. Finally, it's accuracy and effectiveness is proved by several event simulation works for a typical substation.