• Title/Summary/Keyword: industrial sewage sludge

Search Result 116, Processing Time 0.035 seconds

The Present Status of Standard Sludge Characterization Method (슬러지 성상평가방법의 표준화 현황)

  • Kim, Tak-Hyun;Park, Chul-Hwan;Kim, Sang-Yong
    • Clean Technology
    • /
    • v.13 no.2
    • /
    • pp.87-98
    • /
    • 2007
  • As the interest in environmental problems increased, the guideline of effluent qualities becomes strict and the amount of sludge produced from the wastewater treatment facilities steeply increased. The revised Korean acts prohibit the direct reclamation of the sludge exhausted in sewage treatment works from 2003, and the ocean dump of sludge will be also prohibited from 2012. Therefore, the sludge must be recycled, incinerated or composted. To properly perform the utilization and disposal operations, the establishment of well-defined procedures for the characterization of sludge by physical, chemical and biological method and setting up of guidelines for different treatment and disposal routes has become necessary. However, there have not been such standardized methods for sludge characterization in Korea. This review analyzes the present status of establishment and problems of sludge characterization method of Korea. Finally, it was proposed total 15 items of standardized characterization methods suitable to our country for proper sludge recycling and disposal, which was based on the more systematic standard methods of Germany (DIN 38414) and those of advanced nations.

  • PDF

Exposure Assessment of Hazardous gases in Confined Spaces (밀폐공간 종류별 유해가스 발생 농도 평가)

  • Park, Hyunhee;Yoo, Kye-mook;Ham, Seung-hon;Chung, Kwang-Jae;Shin, Min-a;Lee, Koo-yong;Jang, Kyung-jo;Yoon, Chung-sik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.4
    • /
    • pp.381-389
    • /
    • 2009
  • Confined spaces are inherently dangerous workplace and many fatal and nonfatal accidents have been reported. Even though these accidents occur in various kinds of confined spaces, there has rarely been reported on the health hazard agent, i.e., the types of gases and their concentration ranges. Therefore in this study, we evaluated several toxic and asphyxiating gas concentrations in various confined spaces. We surveyed 57 manholes, 3 sewage treatment plants, 2 yellow radish manufacturing companies and 7 barges to measure the concentrations of oxygen($O_2$), hydrogen sulfide($H_2S$), carbon monoxide(CO), ammonia($NH_3$). Lower Explosion Limits(LEL) and Volatile Organic Compounds (VOCs). Those four types of confined spaces occupies 56% of accidents during last 9 years in Korea. In 57 manholes, the concentration varied according to the types of manholes; rainfall and sewage, and by location; residential and industrial areas. Sewage manhole in industrial area was evaluated as the most hazardous than other types of manhole like rainfall manholes, residential sewage manholes. The highest $H_2S$ concentration and the lowest $O_2$ concentration at sewage manhole in industrial area were 300 ppm, 8.7% respectively. In 3 sewage treatment plants, $H_2S$ and $NH_3$ concentrations were reached up to the 500 ppm and 200 ppm respectively. Two yellow radish manufacturing companies showed the concentrations of 316 ppm, 505.2 ppm, 90 ppm and 15.7% for $H_2S$, CO, VOCs and $O_2$, respectively. Seven barges showed 15.9%~20.9% oxygen concentration. Gas species and concentration ranges varied by the types and location of confined spaces; CO, $H_2S$, $O_2$ could be hazardous in manhole, especially manhole connected to sewage plants. CO, $H_2S$, LEL, $O_2$, $NH_3$ should be controlled in sludge silo and sluge pumping confined spaces in sewage treatment plant. The activity of lifting out radish from the storage tank was evaluated more hazardous rather than the other activities in yellow radish manufacturing industry. The employers must conduct the survey to identify all possible confined spaces in their local workplace prior to performing the tasks. At the national level to reduce the accidents in the confined spaces, we suggest that systemic approach and active education program including possible hazards, standard operation procedures, ventilation plan, and personal protective equipment in confined spaces should be implemented.

Optimization of Methane Yield in Anaerobic Digestion of Sewage Sludge with Microwave Pretreatment (극초단파 전처리를 적용한 하수슬러지 혐기성소화에서 메탄수율 최적화)

  • Park, WoonJi;Lee, GwanJae;Lee, DongJun;Lee, SeoRo;Choi, YuJin;Hong, JiYeong;Yang, DongSeok;Lim, KyoungJae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.17-29
    • /
    • 2020
  • The objective of this study was to find an optimum methane yield condition in anaerobic digestion of sewage sludge with microwave pretreatment. The pretreatment process was carried out using a lab scale industrial microwave unit (2,450 MHz frequency). The digestion efficiency of pretreated sludge was evaluated by biochemical methane potential (BMP) test. Box-Behnken design and Response Surface Analysis (RSA) were applied to determine the optimal combination of sludge mixing ratio (0 to 100%), power (400 to 1600 W), holding time (0 to 10 min) and pretreatment temperature (60 to 100℃). BMP test results showed that Volatile Solid (VS) removal efficiency was up to 48% at a condition of 0% for mixing ratio, 1600 W for power, 5 min for holding time, and 80℃ for pretreatment temperature. Methane production was up to 832.3 mL/g VSremoved at a condition of 50% for mixing ratio, 1000 W for power, 5 min for holding time, and 80℃ for pretreatment temperature. The results of the variance analysis (ANOVA) showed that the p-value of the power and pretreatment temperature among the independent variables were significant (p<0.05), and in particular, the pretreatment temperature significantly affected on the solubilization and methane production. The optimum condition for the maximum methane yield (847 mL/g VSremoved) was consist of 38.4% of mixing ratio, 909.1 W of power, 4.1 min of holding time, and 80℃ of temperature within the design boundaries.

Study on Local Wireless Network Data Structure for Sludge Multimeter (슬러지 멀티미터를 위한 근거리무선네트워크 데이터구조 설계 연구)

  • Jung, Soonho;Kim, Younggi;Lee, Sijin;Lee, Sunghwa;Park, Taejun;Byun, Doogyoon;Cha, Jaesang
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.96-100
    • /
    • 2014
  • Recently, the management system of wastewater treatment facility has magnified due to the stringent regulations for the protection of the environment, and a sewage treatment plant efficiency and research of the car development are activated in large facilities or industrial park. however, the existing sewerage disposal system and specific water quality monitoring network reliability for real-time transmission of this building is insufficient. In this paper, we proposed a local wireless network design for sludge multi meter data collection and control for measuring the concentration of the sludge efficiently. Also, the collected data over the local wireless network to transmitted to the central monitoring system and accumulate the data in real time to calculate statistics is possible to monitor the status of the sewage treatment facilities. The proposed system uses a short-range wireless networks of IEEE 802.15.4 and configures an IEEE 802.11 network which can monitor real-time status in central system. Also, we install a sludge multimeter and communication network in sewage treatment facilities and confirm the usefulness of the proposed technique by demonstrating its effectiveness.

Changes of Physical Properties of Soils by Organic Material application (유기성 물질 시용에 따른 농경지 토양물리성 변화 연구)

  • Kim, Lee-Yul;Cho, Hyun-Jun;Han, Kyung-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.5
    • /
    • pp.304-314
    • /
    • 2004
  • The objective of this study was to investigate the effect of organic materials (compost, straw, green manure, pig manure, seed production oil cake, and industrial by products including municipal sewage sludge, industrial sewage sludge, leather processing sludge, and alcohol fermentation processing sludge) on physical properties of soils in seven paddy and four upland fields with differential soil textures, sandy loam, loam, or clay loam, etc. The investigated physical parameters were bulk density (BD), air permeability (AP), macroporosity, hardness, shear resistance, frictional resistance, water stability aggregate (WSA), and Middleton's dispersion ratio. Except for coarse sandy loam field with weak structure, a decrease in BD and shear resistance, and an increase in macroporosity and AP in plots with applying organic materials compared to plots without applying organic materials appeared. In upland fields, the positive effect of organic materials on WSA, BD, and air permeability was higher than in paddy fields. The combined plot of NPK and compost had lower BD, hardness, and shear resistance, and higher macroporosity and WSA than plot with compost. Green manure had higher positive effect on physical properties of soils compared to other organic materials and the extent of positive effect had no significant correlation with soil organic matter content. Of industrial byproducts applied in coarse sandy loam soil under upland condition, municipal sewage sludge and pig manure compost had higher effect on increase of WSA than leather processing sludge and alcohol fermentation processing sludge. Unlike WSA, there were no significant differences between industrial byproduct types in other physical properties. in silty clay loam soil under the upland condition, straw had more positive effect on soil physical parameters than hairy vetch and pig manure. Therefore, different organic materials had differently active effect on physical parameters depending on types of soil and land use. Especially, it could be thought that well-decomposed organic materials have the advantage of an increase in organic matter content, while coarse organic materials of an increase in WSA.

The Study of Biofouling Control and Cause Material in Hybrid Process of Pure Oxygen and Submerged Membrane Bio-reactor (순산소 고율포기시스템 및 침지식 MBR융합공정에서 Biofouling 제어 및 원인물질 규명에 관한 연구)

  • Lee, Sang-Min;Kim, Mi-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.44-53
    • /
    • 2011
  • Membrane bio-reactor (MBR) has several advantages over the conventional activated sludge process, including a high biomass, low sludge production, and better permeate quality. Therefore, the MBR have gained popularity for municipal and industrial wastewater treatment. However the MBR usually were used for sewage and low streng th wastewater treatment because of membrane fouling problem and limitation of oxygen transfer into biomass. In this study, the hybrid process combining MBR and pure oxygen was tested for high strength organic wastewater treatment in the COD loading range from 2 to $10kgCOD/m^3{\cdot}day$. The hybrid process, membrane coupled pure oxygen high compact reactor (MPHCR), had been operated for one year and operation parameters, the effect of COD loading, MLSS concentration and the location of membrane module were studied for membrane fouling characteristic. Also membrane resistance test and the component of foulant was analyzed to investigate what is specific foulant in the MBR.

Soil healthy assesment of organic wastes-treated lysimeter by Basidiomycota (담자균류를 이용한 폐기물연용 밭토양의 건전성 간이평가)

  • Jang, Kab-Yeul;Weon, Hang-Yeon;Choi, Sun-Gyu;Kweon, Soon-Ik;Kim, Gyu-Hyun;Kong, Won-Sik;Yoo, Young-Bok;Sung, Jae-Mo
    • Journal of Mushroom
    • /
    • v.5 no.1
    • /
    • pp.43-49
    • /
    • 2007
  • Application of sludge wastes into the field may help soil fertility with physical, chemical and biological properties. Efficient use of sludge waste, however, requires an individual assessment of the waste products. A lot of experiment into the organic waste-treated soils has been done for decade. However, studies have not been carried out on the assessment of agricultural soil by Basidiomycota. This study was assessed the influence of sludge application on soil healthy in agricultural upland soils. The organic wastes selected for long-term application experiment in this study were municipal sewage sludge (MSS), industrial sewage sludge (ISS), leather processing sludge (LS), alcohol fermentation processing sludge (FS), and pig manure compost (PMC). To develop the soil healthy assesment method, soil samples were diluted by 20X with distilled water. After shaking at 200rpm for 30 minutes, the shaked sample was mixed on PDA(Potato Dextrose Agar). And sterilized at $121^{\circ}C$ for 20 minutes. Coriolus hirsutus (MKACC 50560) was inoculated on petri-dish including PDA mixed sample. After the media was incubated at $25^{\circ}C$ for five days, the mycelial growth of C. hirsutus was measured. When the mycelial growth on sample media was compared with growth on media contained PDA only, well grown media contained sample soil was assesed as healthy soil. The results suggest that the simple method by Coriolus hirsutus is a handy way to assess the healthy of waste sludge-applied upland soils.

  • PDF

Bioremediation of Heavy Metals from the Land Application of Industrial Sewage Sludge with Minari (Oenanthe stolonifer DC.) Plant

  • Lee, Myoung-Sun;Youn, Se-Young;Yim, Sang-Choel;Park, Hee-Joun;Shin, Joung-Du
    • Plant Resources
    • /
    • v.1 no.1
    • /
    • pp.53-59
    • /
    • 1998
  • Laboratory experiments for the removal efficiency of heavy metals in land application of sludge, the accumulation and translocation of heavy metals in x plants after transplanting, and the responses of Minari growth with different ratio of land application of sludge were conducted to determine the potential ability of bioremediation with Minari plants. The removal rate and translocation of copper. zinc. lead. and cadmium in soil and plants were compared after transplanting the Minari plants to soil treated with different ratio of sludge. The removal efficiency of heavy metals in soil incorporated with sludge was different with application ratio, but increased with growing periods of Minari plants. The removal efficiency of Cu, Zn, Pb, and Cd ranged from 67 to 74% from 51% to 63%, from 37% to 71%. and from 15% to 25% after 45 days of transplanting. respectively. The amount removed the copper value. 65.9 mg/kg, observed to be highest in soil incorporated 3% sludge after 45 days. The translocation of Cu. Zn. Pb. and Cd from shoots to roots ranged from 18 to 53%, from 17 to 32%, from 14 to 49%, and from 23 to 38% over growing periods. respectively. In plant responses it appeared to be inhibited the plant growth in the treatment compared with the control at early stage of growth. However, the fresh weights of Minari plant increased from 12.5 to 62.5% in the sludge application after 45 days relative to the control. Therefore the Minari might play a useful role in bioremediation of Cu, Zn, Pb, and Cd in the land application of sludge.

  • PDF

The Assessment of Toxicity on organic Sludge Using Acetylcholinesterase, Cytochrome P450, and Hsp70 Extracted from Earthworm (Eisenia fetida) (지렁이에서 추출한 Acetylcholinesterase, Cytochrome P450, and Heat Shock protein 70을 이용한 유기성슬러지 독성 평가)

  • Na, Young-Eun;Bang, Hae-Son;Kim, Myung-Hyun;Kim, Min-Kyoung;Roh, Kee-An;Lee, Jung-Taek;Ahn, Young-Joon;Yoon, Seong-Tak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.274-279
    • /
    • 2007
  • The toxicitiy of organic sludge such as municipal sewage sludge (MSS), industrial sewage sludge (ISS), alcohol fermentation processing sludge (AFPS) and leather processing sludge (LPS) were evaluated with three environmental biomarkers as acetylcholinesterase, cytochrome P450, and heat shock protein 70 extracted from earthworm (Eisenia fetida). Their toxicities were compared with those of pig manure compost (PMC). MSS, ISS, LPS, and AFPS did not significantly affect the acetylcolinesterase activity, whereas only the elutriate of PMC slightly was increased the activity. MSS, AFPS, and PMC tended to slightly inhibit the cytochrome $P_{450}$ activity, but ISS and LPS showed significantly the inhibitory effect on cytochrome $P_{450}$. The hsp70 expression began to increase after treatments and showed high induction at 6 hour, followed by zero level at around 12 hour. The quantity of the hsp70 expressed by elutriate treatments of PMC, AFPS, MSS, ISS, and LPS was 1.9, 3.0, 3.3, 4.4, and 4.7 fold higher than that of distilled water. These results indicate that in toxicity tests of five organic waste materials, four kinds of sludge materials appeared more toxic than PMC. Results of AChE, P450, and hsp70 of earthworm might be useful for expecting or assessing an effect by exposure of organic wastes to earthworms in soil.

A Study on the Scale-Up of Fluidized Bed Combustors for Low-Calorific Value Wastes (저발열량 폐기물 소각용 유동층 소각로의 Scale-Up에 관한 연구)

  • Park, S.H.;Kim, J.E.;Park, B.S.
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.1-10
    • /
    • 1996
  • An effective scale-up methodology of fluidized bed incinerators for low calorific value industrial wastes such as paper sludge and sewage sludge has been developed based on the similarity rules. Conventional scale-up theories are briefly reviewed and a new simple theory defining the diffusion Fourier number is established taking account of the lateral mixing of fuels in the fluidized bed. From the design and the operating conditions of the pilot FBC plant at Inchon, important design data for the full-scale incinerators are calculated and discussed.

  • PDF