DOI QR코드

DOI QR Code

The Study of Biofouling Control and Cause Material in Hybrid Process of Pure Oxygen and Submerged Membrane Bio-reactor

순산소 고율포기시스템 및 침지식 MBR융합공정에서 Biofouling 제어 및 원인물질 규명에 관한 연구

  • Lee, Sang-Min (Department of Environmental Engineering, Kongju National University) ;
  • Kim, Mi-Hyung (Department of Environmental Engineering, Kongju National University)
  • 이상민 (공주대학교 환경공학과) ;
  • 김미형 (공주대학교 환경공학과)
  • Received : 2010.08.27
  • Accepted : 2010.11.25
  • Published : 2011.01.30

Abstract

Membrane bio-reactor (MBR) has several advantages over the conventional activated sludge process, including a high biomass, low sludge production, and better permeate quality. Therefore, the MBR have gained popularity for municipal and industrial wastewater treatment. However the MBR usually were used for sewage and low streng th wastewater treatment because of membrane fouling problem and limitation of oxygen transfer into biomass. In this study, the hybrid process combining MBR and pure oxygen was tested for high strength organic wastewater treatment in the COD loading range from 2 to $10kgCOD/m^3{\cdot}day$. The hybrid process, membrane coupled pure oxygen high compact reactor (MPHCR), had been operated for one year and operation parameters, the effect of COD loading, MLSS concentration and the location of membrane module were studied for membrane fouling characteristic. Also membrane resistance test and the component of foulant was analyzed to investigate what is specific foulant in the MBR.

Keywords

References

  1. 강문선, 안원영, 임성균, 최광호(2000). MBR(Membrane Bioreactor)을 이용한 침출수의 처리사례(Pilot scale). 공동춘계학술발표회 논문집, 한국물환경학회.대한상하수도학회, pp. 279-282.
  2. 강범희, 임경호, 이상민(2009). 고부하 유기성 폐수처리를 위한 분리막 결합형 순산소 고효율 포기장치의 총괄 산소전달효율 평가. 수질보전 한국물환경학회지, 26(1), pp. 81-88.
  3. 김규진, 윤성훈(2001). Membrane Bioreactor(MBR)를 이용한 오.폐수 처리. 공업화학회지, 12(3), pp. 239-248.
  4. 김시원, 곽성진, 이의신, 홍승모, 민경석(2006). 중력여과 방식의 MBR을 이용한 하수처리에서 HRT변화에 따른 EPS의 거동과 막오염에 대한 영향. 수질보전 한국물환경학회지, 22(5), pp. 865-870.
  5. 김종오(2005). 하.폐수 고도처리 및 핵심요소기술; 혐기성 막분리와 오존처리를 병용한 자원회수형 하.폐수 슬러지 처리 시스템의 실용화. LC9200607041159. 환경부.
  6. 삼성엔지니어링(주)(2000). BAF 기술을 활용한 유기물 및 질소.인 동시제거 공정 기본설계 기술 개발. 99-NE-02-07-A-02. 과학기술부.
  7. 신항식, 이원태, 강석태, 남세용, 정형석(2002). 슬러지특성이 MBR공정의 막오염에 미치는 영향. 대한환경공학회지, 24(5), pp. 879-887.
  8. 심현술, 정철우, 손희종, 손인식(2007). 막의 재질에 따른 막오염 특성 및 물리.화학적 세척의 영향. 한국화학공학회지, 45(5), pp. 500-505.
  9. 안창진, 서인석(2004). 국내.외 하수고도처리공정 개발현황 및 특징분석. 상하수도분과위원회 연구과업보고서, 한국수자원공사.
  10. 장형석, 서준원, 강기훈(2005). 분리막 및 담체 혼합공정에서 유기물질 및 막오염 저감특성. 공동춘계학술발표회 논문집, 한국물환경학회.대한상하수도학회, pp. 329-332.
  11. 차기철, 유영욱, 김동진, 유익근(2004). MBR 공정에서 유기물 부하율의 변화에 따른 SMP와 ECP의 거동. 대한환경공학회지, 26(2), pp. 211-218.
  12. 현대엔지니어링 환경부(2010). http://www.hants.co.kr/sub03/03_1_1_2.htm/.
  13. 홍준호, 김선일(2004). SM-SBR 공정과 MBR 공정의 막 여과 특성에 관한 비교. 화학공학의 이론과 응용, 10(1), pp. 628-631.
  14. 황병국, 이정학, 장인성(2005). MBR 공정에서 막오염완화제가 슬러지 특성과 막오염에 미치는 영향. 응용화학회지, 9(2), pp. 301-304.
  15. APHA. (1992). Standards Methods for the Examination of Water and Wastewater, 18th ed., AWWA and WEF.
  16. Azeredo, J., Oliveira, R., and Lazarova, V. (1998). A new method for extraction of exopolymers from activated sludges. Water Science & Technology, 37(4-5), pp. 367-370. https://doi.org/10.1016/S0273-1223(98)00132-2
  17. Chang, I. S. and Kim, S. N. (2005). Wastewater treatment using membrane filtration-effect of biosolids concentration on cake resistance. Process Biochemistry, 40, pp. 1307-1314. https://doi.org/10.1016/j.procbio.2004.06.019
  18. Chu, L. and Li, S. (2006). Filtration capability and operational characteristics of dynamic membrane bioreactor for municipal wastewater treatment. Separation and Purification Technology, 51(2), pp. 173-179. https://doi.org/10.1016/j.seppur.2006.01.009
  19. Khan, S. J., Ilyas, S., Javid, S., Visvanathan, C., and Jegatheesan, V. (2010). Performance of suspended and attached growth MBR systems in treating high strength synthetic wastewater. Bioresource Technology, Elsevier Ltd.
  20. Kimura, K., Yamato, N., Yamamura, H., and Watanabe, Y. (2005). Membrane fouling in pilot-scale membrane bioreactors (MBRs) treating municipal wastewater. Environ. Sci. Technol., 39, pp. 6293-6299. https://doi.org/10.1021/es0502425
  21. Laspidou, C. S. and Rittmann, B. E. (2002). A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Research, 36(11), pp. 2711-2720. https://doi.org/10.1016/S0043-1354(01)00413-4
  22. Lee, S. M., Jung, J. Y., and Chung, Y. C. (2001). Novel method for enhancing permeate flux of submerged membrane system in two-phase anaerobic reactor. Water Research, 35(2), pp. 471-477. https://doi.org/10.1016/S0043-1354(00)00255-4
  23. Meng, F., Chae, S. R., Drews, A., Kraume, M., Shin, H. S., and Yang, F. (2009). Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material. Water Research, 43, pp. 1489-1512. https://doi.org/10.1016/j.watres.2008.12.044
  24. Nagaoka, H., Ueda, S. M., and Miya, A. (1996). Influence of bacterial extracellular polymers on the membrane separation activated sludge process. Water Science & Technology, 34(9), pp. 165-172. https://doi.org/10.1016/S0273-1223(96)00800-1
  25. Yeon, K. M., Park, J. S., Lee, C. H., and Kim, S. M. (2005). Membrane coupled high-performance compact reactor: A new MBR system for advanced wastewater treatment. Water Research, 39, pp. 1954-1961. https://doi.org/10.1016/j.watres.2005.03.006