• Title/Summary/Keyword: inductance simulation

Search Result 398, Processing Time 0.023 seconds

A New 12-Pulse Diode Rectifier System With Low kVA Components For Clean Power Utility Interface

  • ;Prasad N.Enjeti
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.5
    • /
    • pp.423-432
    • /
    • 1999
  • This paper proposes a 12­pulse diode rectifier system with low kVA components suitable for powering switch mode power supplies or ac/dc converter applications. The proposed 12-pulse system employs a polyphase transformer, a zero sequence blocking transformer (ZSBT) in the dc link, and an interphase transformer. Results produce near equal leakage inductance in series with each diode rectifier bridge ensuring equal current sharing and performance improvements, The utility input currents and the voltage across the ZSBT are analyzed the kVA rating of each component in the proposed system is computed. The 5th , 7th , 17th and 19th harmonics are eliminated in the input line currents resulting in clean input power. The dc link voltage magnitude generated by the proposed rectifier system is nearly identical to a conventional to a conventional 6-pulse system. The proposed system is suitable to retrofit applications as well as in new PWM drive systems. Simulation and experimental results from a 208V , 10kVA system are shown.

  • PDF

Effective Power/Ground Network Design Techniques to suppress Resonance Effects in High-Speed/High-Density VLSI Circuits (고속/고밀도 VLSI 회로의 공진현상을 감소시키기 위한 효율적인 파워/그라운드 네트워크 설계)

  • Ryu Soon-Keol;Eo Yung-Seon;Shim Jong-In
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.7 s.349
    • /
    • pp.29-37
    • /
    • 2006
  • This paper presents a new analytical model to suppress RLC resonance effects which inevitably occur in power/ground lines due to on-chip decoupling capacitor and other interconnect circuit parasitics (i.e., package inductance, on-chip decoupling capacitor, and output drivers, etc.). To characterize the resonance effects, the resonance frequency of the circuit is accurately estimated in an analytical manner. Thereby, a decoupling capacitor size to suppress the resonance for a suitable circuit operation is accurately determined by using the estimated resonance frequency. The developed novel design methodology is verified by using $0.18{\mu}m$ process-based-HSPICE simulation.

A Study on AFPM(Axial Flux Permanent Magnet)Motor without Stator Corer (코어없는 축방향 영구자석형 전동기에 관한 연구)

  • Park, Jong-Chan;Choi, Hae-Ryong;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.284-291
    • /
    • 2006
  • Recently with the motorizing of electric home appliances and car systems, there is increasing interest in high efficiency electric motors. Thus, the present study described the operating characteristics of coreless AFPM motor that is highly efficient in high speed driving, and discussed its electric characteristics from the perspective of design. In particular, we examined back electromotive force and the magnetic field characteristic in slits, which have significant effects on the characteristic of the motor, and conducted simulation and experiment on control characteristic according to inductance characteristic. This study analyzed torque speed and efficient operation characteristic as well as control characteristic through comparing the result of motor design with the result of output characteristic experiment based on the electric network method. Furthermore, we evaluated vibration and noise that may occur due to the absence of core.

A Study on the CCFL Parallel Driving Circuit for the large LCD TV (대화면 LCD TV용 CCFL 병렬 구동에 관한 연구)

  • Jang, Young-Su;Yoon, Seok;Kweon, Gie-Hyoun;Han, Sang-Kyoo;Hong, Sung-Soo;Sakong, Suk-Chin;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.454-462
    • /
    • 2006
  • To enhance the competitive edge of the material cost, various techniques lowering the material cost of inverter to drive Cold Cathode Fluorescent Lamp (CCFL) have been developed. In this paper, the theoretical analysis has been done for the existing techniques such as Jin Balance and O2Micro technique. Especially, How to design the value of magnetizing inductance to meet the specification of the lamp current tolerance between lamps has been disclosed. Based on this result, two kinds of hybrid type balancing techniques have been proposed and analyzed mathematically, Also, the accuracy of the proposed techniques has been verified through Pspice simulation.

A Study on the Electromagnetic Transients at Switching Capacitor Banks in a Electric Distribution Electric Power Distribution Substation (배전변전소에서 캐패시터 뱅크 투입시 일어나는 전자과도 현상에 관한 연구)

  • 김경철
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.1
    • /
    • pp.92-99
    • /
    • 2002
  • Transient in an electric distribution system are mainly generated by switching. This paper presents analysis of switching surge and means of limiting the voltage magnification transient for high voltage power systems by using the EDSA's EMTAP software package. One means of limiting the voltage magnification transient is to convert the end-user power factor contraction capacitor banks to harmonics filters. An inductance in series with the capacitor bank was used to decrease the transient voltage at the customer bus to acceptable levels. And also simulation results used the EDSA harmonics analysis program show the effect of harmonics reduction.

Complex Vector Current Control of Grid Connected Inverter Robust for Inductance Variation (인덕턴스 변화에 강인한 계통연계형 인버터의 복소 벡터 전류제어기)

  • Lee, Taejin;Jo, Jongmin;Shin, Changhoon;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1648-1654
    • /
    • 2016
  • This paper analyzes complex vector current control for the enhanced cross-coupling compensation in accordance with parameter variation in grid-connected inverter system, and verifies through simulation and experiment. Complex vector current control is performed in the synchronous reference frame through d-q transformation. It generates cross-coupling components with rotating nominal angular frequency. In general, cross-coupling elements are compensated by decoupling terms added to output of conventional decoupling PI controller. But, it is impossible to compensate them perfectly which transient response is especially deteriorated such as large overshoot and slow tracking, when variation of grid impedance or measurement error occurs. However, complex vector current control can improve stability and response characteristic of current control regardless of the situation as before. Decoupling controller and complex vector controller are represented through complex forms, and these controllers are analyzed by using frequency response in s-domain, respectively. It is verified that complex vector controller has more superior response characteristic than decoupling controller through MATALB, PSIM and experimental in 5kW grid-connected inverter when L filter parameter is varied from 1.1mH to increase double, 2.2mH.

Study on Switching Angle Characteristics for Driving Performance Improvement of SRM Drive (SRM 드라이브의 운전성능 향상을 위한 스위칭각 특성에 관한 연구)

  • 오석규;최대완;안진우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.6
    • /
    • pp.506-513
    • /
    • 2001
  • The torque of an SRM depends on the phase current and derivative of inductance. But an SRM is difficult to control the desired torques because of saturation in magnetic circuit An SRM is controlled by parameters of input voltage, and switch on , off angle The switch on off angles of an SRM regulate the magnitude and shape of current waveform and decide the magnitude and shape of torque This paper proposes an the optimization control scheme by adjusting both the switch on an switch off angle . The switch off angles are decided by reference of efficiency using simulation and experiments. The switch on angles are decided by load torque , And the dwell angles are controlled for torque control and speed control using GA-neural network which is used to simulated the reasonable switching angle.

  • PDF

Sensorless Control of a Single-Phase Switched Reluctance Motor Using Residual Flux

  • Yang, Hyong-Yeol;Shin, Duck-Shick;Lim, Young-Cheol
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.911-918
    • /
    • 2009
  • This paper presents a new sensorless control method for single-phase switched reluctance motors using induced electromotive force (EMF) due to the residual flux both on the stator and the rotor during phase commutation. The induced EMF falls to zero when the rotor pole moves away from the overlap with the stator pole. By detecting this instant, the speed and position of the rotor can be simply estimated. This method is very simple to implement and it is insensitive to variations in the system parameters as it does not require any stored magnetic data or offline inductance measurements but requires only measurements of the terminal voltage and a simple analog circuit. The proposed method is implemented on a 6/6 single-phase switched reluctance motor. However, it can also be implemented on a multiphase SRM regardless of the size, operation speed and switching mode of the motor hence making the proposed method viable to many applications. Simulation and experimental verification is provided to demonstrate the feasibility of the proposed method.

Analysis on Electric Shock Current in DC Electricity (직류환경에서 인체에 흐르는 감전전류 분석)

  • Lee, Jin-Sung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.254-259
    • /
    • 2016
  • Recently, DC distribution systems have become a hot issue because of the increase in digital loads and DC generation systems according to the expansion of renewable energy technologies. To obtain the practical usage of DC electricity, safety should be guaranteed. The main concerns for safety are twofold: one side is human protection against electric shocks, and the other is facility protection from short faults. "Effects of current on human beings and livestock" (IEC 60479) defines a human body impedance model in electric shock conditions that consists of resistive components and capacitive components. Although the human body impedance model properly works in AC electricity, it does not well match with the electric shock behavior in DC electricity. In this study, the contradiction of the human body impedance model defined by IEC 60479 in case of DC electricity is shown through experiments for the human body. From the analysis of experimental results, a novel unified human body impedance model in electric shock conditions is proposed. This model consists of resistive components, capacitive components, and an inductance component. The proposed human impedance model matches well for AC and DC electricity environments in simulation and experiment.

Mathematical Analysis of LLC Series Resonant Converter with Current Doubler Rectifier using Coupled Inductor (Coupled Inductor를 활용한 배전류 정류 회로를 적용한 LLC 직렬 공진 컨버터의 수식화 해석)

  • Shin, Jung-Yoon;Hwang, Soon-Sang;Yoon, Byung-Chul;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.440-449
    • /
    • 2014
  • This study proposes an LLC series resonant converter with a current doubler using a coupled inductor as a rectification circuit for the secondary side. The current doubler circuit is generally used for a high-voltage input and low-voltage output circuit to obtain high efficiency with small transformer turn ratio. However, an inductive circuit is not generally used in the secondary side of an LLC series resonant converter. If inductive components exist on the secondary side, the resonant characteristics are changed through the secondary inductive circuit. Mathematical analysis shows that the secondary-side current doubler with coupled inductor is not affected by the resonant characteristic of the primary LLC if leakage inductance occurs in the coupled inductor. Results of the analysis are proven by simulation; an experiment is also conducted for the proposed circuit.