• 제목/요약/키워드: indoor temperature

검색결과 1,112건 처리시간 0.023초

도시가스 사용 주택의 동절기 실내온열환경 평가 (Evaluation of Indoor Thermal Environment of Houses using for heating in winter)

  • 박석봉;이현우
    • 한국태양에너지학회 논문집
    • /
    • 제25권4호
    • /
    • pp.125-131
    • /
    • 2005
  • This study identified satisfaction with gas heating and indoor thermal environment, targeting houses using gases for heating. 1) Thermal environment is relatively satisfactory except that indoor humidity is low. 2) A question that indoor temperature has to be decreased for saving energy was given and about two thirds of the respondents answered that temperature has to be lowered. When they were asked how to save energy 57% answered that they put on more clothes and 27% answered that they lower indoor temperature If consistent promotion on energy saving is implementer it's believed that energy can be effectively saved. 3) People wear simple clothes when they stay indoor because they think it is comfortable. However, for energy saving. they gave to wear warm clothes though they stay indoor.

대공간의 실내온열환경 실측 및 분석 (The Field Measurement and Analysis of Indoor Thermal Environment in Large Enclosures)

  • 채문병;양정훈;최동호;석호태
    • 한국공간구조학회논문집
    • /
    • 제8권1호
    • /
    • pp.77-88
    • /
    • 2008
  • 본 연구에서는 대공간을 동계 및 하계로 구분하여 실내온열환경의 변화를 실측하고 냉 난방조건과 관련하여 대공간에서 형성되는 실내온열환경의 특성을 파악하는 것을 목적으로 하여, 대공간의 수직 및 수평온도분포, 객석온도분포, 실내표면온도분포, 실내온열쾌적성 등의 실내온열환경을 검토하였다.

  • PDF

외기상태의 변화에 따른 실내 환경인자의 민감도 분석 (Sensitivity Analysis of Indoor Environment Factors along with Changes of Outdoor Air Condition)

  • 조석호
    • 한국환경과학회지
    • /
    • 제19권2호
    • /
    • pp.125-136
    • /
    • 2010
  • The most important factors relating to the indoor air environment are temperature, airflow, humidity, and contaminant concentration. A sensitivity analysis of indoor environment factors was carried out to grasp influences along with changes of atmospheric conditions. An integrated multizone model was used to predict these sensitivities. This model was applied to an apartment with six zones. Airflow rates are influenced very seriously by changes of wind direct or wind velocity, but are influenced very slightly by changes of outdoor air temperature and are not influenced at all by changes of outdoor air humidity or contaminant concentration. Indoor air temperatures are influenced very directly by changes of outdoor air temperature, but are influenced very slightly by wind direction or wind velocity and are not influenced at all by changes of outdoor air humidity or contaminant concentration. Indoor air humidities are influenced very directly by changes of outdoor air humidity, but are not influenced at all by changes of outdoor air contaminant concentration and have little or no influence by changes of wind direction, wind velocity, or outdoor air temperature. Indoor air contaminant concentrations are influenced very seriously by changes of wind direct or wind velocity, but are influenced somewhat by changes of outdoor air contaminant concentration and are influenced very slightly by changes of outdoor air temperature and are not influenced at all by changes of outdoor air humidity.

전통온돌방의 실내온열환경 및 온열감에 관한 연구 (Evaluation of Indoor Thermal Environment and Thermal Sensation in Traditional Ondol Room)

  • 김난행;손장열
    • 한국주거학회논문집
    • /
    • 제15권2호
    • /
    • pp.19-25
    • /
    • 2004
  • The aim of the research was to evaluate the characteristics of indoor thermal environment and thermal sensation in the traditional Ondol room. Indoor thermal factors including air temperature, operative temperature, floor surface temperature, relative humidity, PMV, OT were measured, and survey was carried out to understand subjective responses of resident's related to indoor thermal environment in Ondol room. The analysed houses are: the Chung hyo dang(the head house of Ryu family in Andong) and the Pyeung won jung(the traditional house in Yesan). The purpose of the survey was to know the relationship between resident's sensation and thermal environmental indicators such as air temperature, relative humidity, floor surface temperature, OT. The experimental results have pointed out how Ondol room may lead to comfortable and uniform indoor thermal environments.

도시 일부지역에서의 실내 라돈농도에 관한 연구 (A Study on Indoor Radon Concentrations in Urban Area)

  • 김순애;백남원
    • 한국환경보건학회지
    • /
    • 제28권2호
    • /
    • pp.89-98
    • /
    • 2002
  • This study was taken in general hospital, hotel, shopping center, underground cafe, school, house, for the purpose of investigating the distribution of indoor radon concentration in urban area, by E-PERM which approved U.S. EPA, between August and November 1999. There are two sampling Places were exceed 148 ㏃/㎥(4 pCi/L; U.S EPA remedial level), difference mean is 24.0㏃/㎥ when compared with underground vs. aboveground indoor radon concentration in the same building and ratio is 1.6, so underground area is higher than aboveground (p<0.05). Influencing factors were examined. They related to the location of sampler(detector) open or near the door is lower radon concentration than inside portion, which explains probably open area has better ventilated air and dilutes indoor radon concentration. Temperature has a negative relationship (p<0.05) with indoor radon concentration and relative humidity has a positive (p<0.05) Simultaneously to investigate water radon concentration, collected piped-water and the results were very low, which is the same in piped-water concentration other countries. In conclusion, underground indoor radon concentration is higher than aboveground. Concentration was related to sampling spot, open portion is lower than inside. Higher the temperature, lower the indoor radon concentrations. On the other hand higher the relative humidity, higher the indoor radon concentrations. Indoor radon concentration is influenced by sampling point, temperature, relative humidity.

대공간의 바닥 복사 난방 적용에 관한 연구 (A Study on Application of Radiant Floor Heating in Large Space)

  • 안민희;최창호
    • 한국태양에너지학회 논문집
    • /
    • 제27권3호
    • /
    • pp.79-85
    • /
    • 2007
  • This paper addresses the indoor air quality when radiant floor heating is applied in large space. Radiant heat exchange between surfaces depends on the orientation and the temperature of the surfaces. Also, the temperature and the radiant characteristic of the wall and the roof that face the floor have great influence on the indoor air environment due to the largeness of the wall and the roof in large spaces. In this study, we simulate a test-cell(25X20X10) using a ies YE And using a CFD(microflo in VE), an indoor air environment was investigated to establish the optimum temperature of floor. At the first time of the heating, high floor temperature is demanded. At the middle of the heating, however, the temperature of the residential space was formed appropriately, although the temperature of the floor was set low.

바닥 복사난방 시스템의 실내온도 제어방안에 관한 시뮬레이션 연구 (Simulation Study for Control Strategies of Indoor Air Temperature in Floor Radiant Heating System)

  • 송재엽;안병천
    • 한국지열·수열에너지학회논문집
    • /
    • 제12권4호
    • /
    • pp.21-26
    • /
    • 2016
  • In this study, the control strategies of indoor air temperature in floor radiant heating system were researched by computer simulation. The temperature difference based time control method using the difference of indoor set temperature and indoor temperature is compared with the existing On-Off control one for heating control performances. As a result, the temperature difference based time control method shows better thermal environmental characteristics in case of selected operational conditions in comparison with existing control one.

바닥복사 난방시스템의 밸브구동 특성을 고려한 실내 열환경 성능 개선 연구 (A Study on the Improvement of Indoor Thermal Performance of Floor Radiant Heating System Considering Valve Operation Characteristics)

  • 송재엽;안병천
    • 한국지열·수열에너지학회논문집
    • /
    • 제17권4호
    • /
    • pp.36-45
    • /
    • 2021
  • In this study, to improve the indoor thermal environment of the radiant floor heating system, a study was conducted on the temperature change characteristics and energy consumption according to the change of the indoor air set temperature, the supply hot water temperature and the outdoor temperature. As for the control method, the on/off control and the thermal difference proportional control method proposed through previous studies were applied. In addition, in consideration of field applicability, numerical analysis was performed for the case where the indoor air temperature sensor was affected by the wall temperature. As a result, it was found that the temperature difference proportional control method is more effective for thermal comfort and energy saving than on/off control.

박물관 실내공기질 변동에 관한 연구 (Variation of Indoor Air Quality in Museum)

  • 이정주;김신도;부문자
    • 한국환경보건학회지
    • /
    • 제22권4호
    • /
    • pp.43-48
    • /
    • 1996
  • Indoor air quality(IAQ) in museum is very important for protection of cultural properties. In our study, we measured air pollutants($NO_x, NH_3, SO_2, O_3$, CO, $CO_2$, TSP), temperature and humidity to evaluate IAQ of national central museum. Indoor carbon dioxide and TSP concentrations were higher than outdoor concentrations. Temperature, huinidity and TSP had large deviation depending on air conditioning operates or not. Indoor gas phase pollutants except $CO_2$ were lower than outdoor concentrations, but $SO_2$ concentration was high in storage. $CO_2$ and TSP were influenced by the number of spectators.

  • PDF

업무용 건축물의 실내 조명기구 특성에 따른 발열 효과에 관한 연구 (Interior heating effect in an office building according to heat properties of light fixture)

  • 이윤진;안병립;김종훈;정학근;장철용;김태연
    • KIEAE Journal
    • /
    • 제15권2호
    • /
    • pp.117-122
    • /
    • 2015
  • Purpose: Generally, 30% of the total energy consumption in office building is used for artificial indoor lightings, and almost 75-85% of electric power in fluorescent and Light-Emitting Diode (LED) lightings can be dissipated as a form of heat into indoor environment. The heat generated by indoor lightings can cause the increase of cooling load in office buildings. Thus, it its important to consider indoor lightings as a heat and light source, simultaneously. Method: In this study, we installed two kinds of indoor lightings including fluorescent and LED lightings and measured surface temperature of both indoor lightings. In addition, we obtained ambient temperature of indoor space and finally calculated total heat dissipated from plenum area and surface of lightings. Result: Total indoor heat gain was 87.17Wh and 201.36Wh in cases of six 40W-LED lightings and 64W-fluorescent lightings, respectively.