• Title/Summary/Keyword: indoor radio

Search Result 232, Processing Time 0.027 seconds

Factor Graph-based Multipath-assisted Indoor Passive Localization with Inaccurate Receiver

  • Hao, Ganlin;Wu, Nan;Xiong, Yifeng;Wang, Hua;Kuang, Jingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.703-722
    • /
    • 2016
  • Passive wireless devices have increasing civilian and military applications, especially in the scenario with wearable devices and Internet of Things. In this paper, we study indoor localization of a target equipped with radio-frequency identification (RFID) device in ultra-wideband (UWB) wireless networks. With known room layout, deterministic multipath components, including the line-of-sight (LOS) signal and the reflected signals via multipath propagation, are employed to locate the target with one transmitter and a single inaccurate receiver. A factor graph corresponding to the joint posterior position distribution of target and receiver is constructed. However, due to the mixed distribution in the factor node of likelihood function, the expressions of messages are intractable by directly applying belief propagation on factor graph. To this end, we approximate the messages by Gaussian distribution via minimizing the Kullback-Leibler divergence (KLD) between them. Accordingly, a parametric message passing algorithm for indoor passive localization is derived, in which only the means and variances of Gaussian distributions have to be updated. Performance of the proposed algorithm and the impact of critical parameters are evaluated by Monte Carlo simulations, which demonstrate the superior performance in localization accuracy and the robustness to the statistics of multipath channels.

Implementation of an indoor wireless modem using direct sequence spectrum technology (직접시퀀스 대역 확산 방식을 이용한 실내 무선 모뎀의 구현)

  • 박병훈;김호준;황금찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.9A
    • /
    • pp.2141-2152
    • /
    • 1998
  • In this paper, we design and implement an indoor wireless modem using small signal of ISM band regulation, which can tranceive reliable data streams. We use direct sequence spead spectrum (DS-SS) signaling with synchronous BPSK and QPSK modulation, convolutional coding with viterbi decoding. The radio frequency module uses frequency devision duplexing in 900 MHz band, and the digital module is implemented with FPGAs for the purpose fo ASIC design. The perfomrance of our own acquistion and tracking circuit consisting digital matched filter and decision logic is proved by experiments, and the possibility of file transfer at indoor environment with the entrie system that the modem is connected the PC through RS-232C port is verified.

  • PDF

Performance of Rake Receiver for Pulse Position Modulation-Time Hopping Ultra Wide Band Systems in Indoor Environments (실내 환경의 펄스 위치 변조-시간 도약 초광대역 무선통신 시스템에서 레이크 수신기 성능)

  • Kim, Joo-Chan;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.179-184
    • /
    • 2010
  • In this paper, we analyze and simulate the performance of RAKE receiver for ultra wide band (UWB) systems in indoor multipath radio channel. Pulse position modulation-time hopping (PPM-TH) signal is considered. And we also consider three types of RAKE receivers, which are ideal RAKE, selective RAKE, and partial RAKE receivers. The indoor channel is modeled as the modified Saleh and Valenzuela (SV) model which has been proposed as a UWB channel model by the IEEE group, IEEE 802.15.SG3a.

Real-Time Eye Tracking Using IR Stereo Camera for Indoor and Outdoor Environments

  • Lim, Sungsoo;Lee, Daeho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3965-3983
    • /
    • 2017
  • We propose a novel eye tracking method that can estimate 3D world coordinates using an infrared (IR) stereo camera for indoor and outdoor environments. This method first detects dark evidences such as eyes, eyebrows and mouths by fast multi-level thresholding. Among these evidences, eye pair evidences are detected by evidential reasoning and geometrical rules. For robust accuracy, two classifiers based on multiple layer perceptron (MLP) using gradient local binary patterns (GLBPs) verify whether the detected evidences are real eye pairs or not. Finally, the 3D world coordinates of detected eyes are calculated by region-based stereo matching. Compared with other eye detection methods, the proposed method can detect the eyes of people wearing sunglasses due to the use of the IR spectrum. Especially, when people are in dark environments such as driving at nighttime, driving in an indoor carpark, or passing through a tunnel, human eyes can be robustly detected because we use active IR illuminators. In the experimental results, it is shown that the proposed method can detect eye pairs with high performance in real-time under variable illumination conditions. Therefore, the proposed method can contribute to human-computer interactions (HCIs) and intelligent transportation systems (ITSs) applications such as gaze tracking, windshield head-up display and drowsiness detection.

Indoor Location Data Construction Technique using GAN (GAN을 이용한 실내 위치 데이터 구성 기법)

  • Yoon, Chang-Pyo;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.490-491
    • /
    • 2021
  • Recently, technologies using Wi-Fi fingerprints and deep learning are being studied to provide accurate location-based services in an indoor environment. At this time, the composition of learning data is very important, and it is essential to collect sufficient data necessary for learning. However, the number of specific points for the collection of radio signal data within the area requiring positioning is infinite, and it is impossible to collect all of these data. Therefore, there is a need for a way to make up for insufficient learning data. This study proposes a method of constructing a sufficient number of location data necessary for learning based on insufficiently collected location data.

  • PDF

A Markerless Augmented Reality Approach for Indoor Information Visualization System (실내 정보 가시화에 의한 u-GIS 시스템을 위한 Markerless 증강현실 방법)

  • Kim, Albert Hee-Kwan;Cho, Hyeon-Dal
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.1
    • /
    • pp.195-199
    • /
    • 2009
  • Augmented reality is a field of computer research which deals with the combination of real-world and computer-generated data, where computer graphics objects are blended into real footage in real time and it has tremendous potential in visualizing geospatial information. However, to utilize augmented reality in mobile system, many researches have undergone with GPS or marker based approaches. Localization and tracking of current position become more complex problem when it is used in indoor environments. Many proposed RF based tracking and localization. However, it does cause deployment problems of large sensors and readers. In this paper, we present a noble markerless AR approach for indoor navigation system only using a camera. We will apply this work to mobile seamless indoor/outdoor u-GIS system.

  • PDF

Indoor Positioning System Using Ultrasonic and RF (초음파와 RF를 이용한 실내 측위 시스템)

  • Zho, Back-doo;Kwon, Sung-oh;Cheon, Seong-eun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.413-423
    • /
    • 2017
  • In this paper, we propose a ultrasonic and RF-based indoor localization system. In previous work, various systems were proposed for indoor localization, but they have limitation in applicability due to time-synchronization, complexity, or accuracy. To overcome such problems, an indoor localization system with ultrasonic and RF is proposed. A transmitting system is composed of a pair of ultrasonic and RF transmitters and the receiving system is composed of multiple ultrasonic receivers and one RF receiver. The theoretical performance limitation is also analyzed. To verify localization performance, we have implemented a receiving systems and a transmitting system using Arduino modules. Experiments were performed in $2m{\times}2m{\times}2m$ space and the localization errors had a mean of 6.1cm and a standard deviation of 1.6cm.

ARVisualizer : A Markerless Augmented Reality Approach for Indoor Building Information Visualization System

  • Kim, Albert Hee-Kwan;Cho, Hyeon-Dal
    • Spatial Information Research
    • /
    • v.16 no.4
    • /
    • pp.455-465
    • /
    • 2008
  • Augmented reality (AR) has tremendous potential in visualizing geospatial information, especially on the actual physical scenes. However, to utilize augmented reality in mobile system, many researches have undergone with GPS or ubiquitous marker based approaches. Although there are several papers written with vision based markerless tracking, previous approaches provide fairly good results only in largely under "controlled environments." Localization and tracking of current position become more complex problem when it is used in indoor environments. Many proposed Radio Frequency (RF) based tracking and localization. However, it does cause deployment problems of large RF-based sensors and readers. In this paper, we present a noble markerless AR approach for indoor (possible outdoor, too) navigation system only using monoSLAM (Monocular Simultaneous Localization and Map building) algorithm to full-fill our grand effort to develop mobile seamless indoor/outdoor u-GIS system. The paper briefly explains the basic SLAM algorithm, then the implementation of our system.

  • PDF

Smart Phone Sensor-Based Indoor Location Tracking System for Improving the Location Error of the Radio Environment (무선 환경의 위치 정보 오차 개선을 위한 스마트폰 센서 기반 실내 위치 추적 시스템)

  • Lee, Dae-Young;Kang, Young-Heung
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.1
    • /
    • pp.74-79
    • /
    • 2015
  • In this paper, in order to improve the error is utilized to location tracking the smart sensor detects a walking information user, RSSI is to provide an indoor position tracking system that is capable of correcting an error in terms weak. The acceleration sensor is able to detect the activity in the user walking and detects the number of step and the moving distance using the same. The Direction sensor is utilized as a digital compass, to detect the moving direction of the user. As a result of detecting the walking information using the sensor, it can be showed that this proposed indoor positioning system has a high degree of accuracy for the number of steps and the movement direction. Therefore, this paper shows that the proposed technique can correct the error of the location information to be problem in the conventional indoor location system which uses the only Wi-Fi APs by estimating the user's movement direction and distance using the sensors in smartphone without an additional equipment and cost.

Implementation of Indoor Location Tracking System Using ETOA Algorithm in Non-Line-Of-Sight Environment (비가시선(NLOS) 환경에서 ETOA알고리즘을 이용한 실내 위치 추적 시스템 구현)

  • Kang, Kyeung-Sik;Choi, Goang-Seog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4B
    • /
    • pp.300-308
    • /
    • 2012
  • Many indoor location tracking technologies have been proposed. Generally indoor location tracking using TOA signal is used, there is a weak point that it's difficult to track the location due to obstacles like a refraction, reflection and dispersion of radio wave. In this paper, we apply ETOA(Estimated-TOA) algorithm in NLOS(Non-Line-Of-Sight) environment to solve above problem. In NLOS environment, TOA value between Beacon and Mobile node is predicted by ETOA algorithm and the tracking of indoor location is also possible to identify using two NLOS beacons of three beacons by this algorithm. We show that the proposed algorithm is accurate location tracking is accomplished using the applying the proposed algorithm to indoor moving robot and the inertia sensor of robot and Kalman filter algorithm.